# Joint Models for NLP

Yue Zhang

# Outline

- Motivation
- Statistical Models
- Deep Learning Models

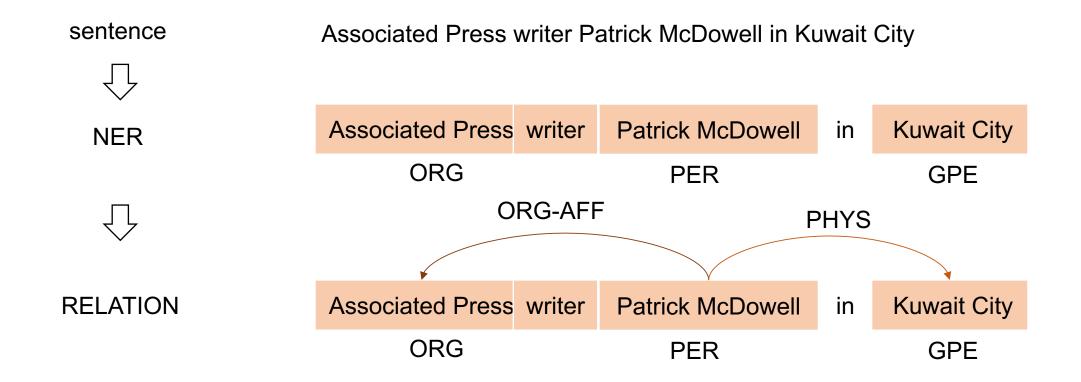
# Outline

- Motivation
- Statistical Models
- Deep Learning Models

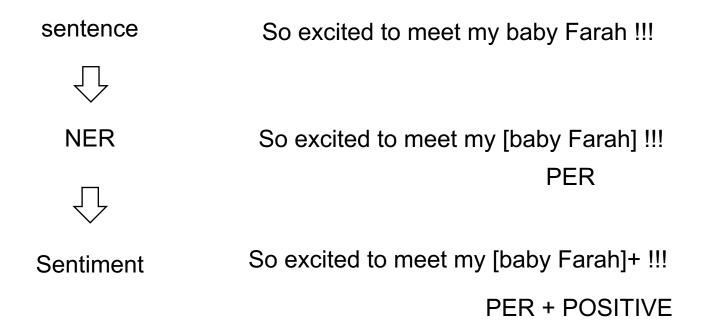
- Subtasks in NLP
  - Segmentation > POS tagging

布朗访问上海
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓<

- Subtasks in NLP
  - NER and Relation



- Subtasks in NLP
  - Entity and Sentiment



- Joint model
  - Reduce error propagation
  - Allow information mixing
- Challenge
  - Joint learning
  - Search

# Outline

- Motivation
- Statistical Models
- Deep Learning Models

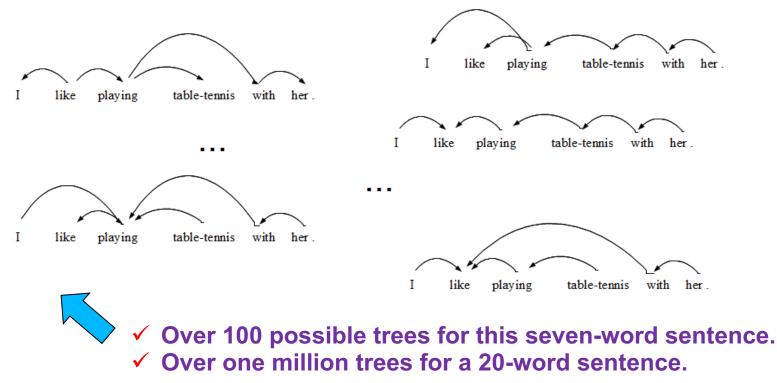
#### **Statistical Models**

- Graph-Based Methods
- Transition-Based Methods

#### **Statistical Models**

- Graph-Based Methods
- Transition-Based Methods

- Traditional solution
  - Score each candidate, select the highest-scored output
  - Search-space typically exponential



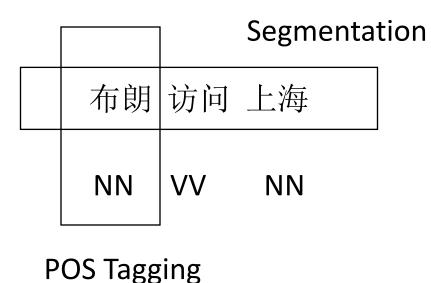
- Joint Label Structure
- Reranking
- Joint Modeling (Multi task)
- Joint Modeling (Single task)

- Joint Label Structure
- Reranking
- Joint Modeling (Multi task)
- Joint Modeling (Single task)

- Two questions to building a Chinese POS tagger:
  - Should we perform Chinese POS tagging strictly after word segmentation in two separate phases (one at-a-time approach), or perform both word segmentation and POS tagging in a combined, single step simultaneously (all-at-once approach)?
  - Should we assign POS tags on a word-by-word basis (like in English), making use of word features in the surrounding context (word-based), or on a character-by-character basis with character features (characterbased)?

Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or character-based?." *EMNLP*. 2004.

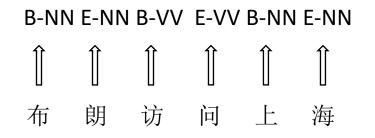
Collapsing labels



Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or character-based?." *EMNLP*. 2004.

Collapsing labels

| BE | BE | BE |
|----|----|----|
| 布朗 | 访问 | 上海 |
| NN | VV | NN |



Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or character-based?." *EMNLP*. 2004.

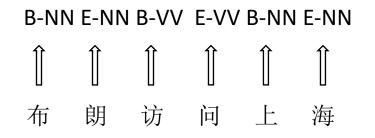
One-at-a-Time, Word-Based POS Tagger : Feature

(a)  $W_n (n = -2, -1, 0, 1, 2)$ (b)  $W_n W_{n+1} (n = -2, -1, 0, 1)$ (c)  $W_{-1} W_1$ (d)  $Pu(W_0)$ (e)  $T(W_{-2})T(W_{-1})T(W_0)T(W_1)T(W_2)$ (f)  $POS(W_{-1})$ (g)  $POS(W_{-2})POS(W_{-1})$ 

Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or character-based?." *EMNLP*. 2004.

Collapsing labels

| BE | BE | BE |
|----|----|----|
| 布朗 | 访问 | 上海 |
| NN | VV | NN |



Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or character-based?." *EMNLP*. 2004.

• One-at-a-Time, Character-Based POS Tagger : Feature (a)  $C_n$  (n = -2, -1, 0, 1, 2) (b)  $C_n C_{n+1}$  (n = -2, -1, 0, 1) (c)  $C_{-1}C_{1}$ (d)  $W_0 C_0$ (e)  $Pu(C_0)$ (f)  $T(C_{-1})T(C_{-1})T(C_{0})T(C_{1})T(C_{2})$ (g)  $POS(C_{-lW_0})$ (h)  $POS(C_{-2W_0})POS(C_{-1W_0})$ 

Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or character-based?." *EMNLP*. 2004.

- All-at-Once, Character-Based POS Tagger and Segmenter : Feature (a)  $C_n$  (n = -2, -1, 0, 1, 2)
  - (b)  $C_n C_{n+1}$  (n = -2, -1, 0, 1)
  - (c)  $C_{-1}C_{1}$
  - (d)  $W_0 C_0$
  - (e)  $Pu(C_0)$
  - (f)  $T(C_{-2})T(C_{-1})T(C_0)T(C_1)T(C_2)$
  - (g)  $B(C_{-1W_0})POS(C_{-1W_0})$
  - (h)  $B(C_{-2W_0})POS(C_{-2W_0})B(C_{-1W_0})POS(C_{-1W_0})$

Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or character-based?." *EMNLP*. 2004.

• Results on the various methods(local maximum entropy)

| Method        | Word Seg  | POS      | Total   |
|---------------|-----------|----------|---------|
|               | F-measure | Accuracy | Testing |
|               | (%)       | (%)      | Time    |
| One-at-a-Time | 95.1      | 84.1     | 1 min   |
| Word-Based    |           |          | 20 secs |
| One-at-a-Time | 95.1      | 91.7     | 1 min   |
| Char-Based    |           |          | 50 secs |
| All-At-Once   | 95.2      | 91.9     | 20 mins |
| Char-Based    |           |          |         |

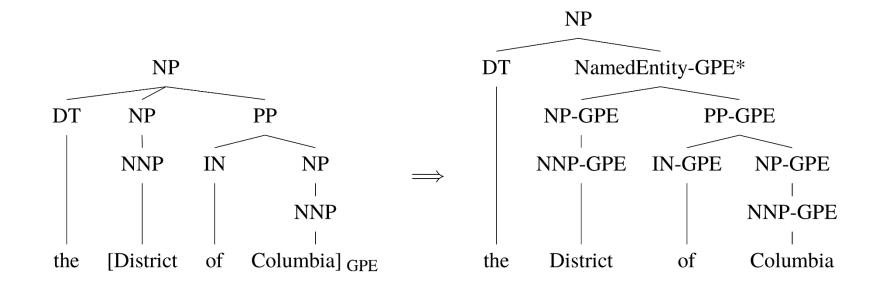
Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or character-based?." *EMNLP*. 2004.

#### Results Discussions

- Character-based approach is better than word-based approach. Unlike in English where each English letter by itself does not possess any meaning, many Chinese characters have well defined meanings. In addition, since the OOV rate for Chinese words is much higher than the OOV rate for Chinese characters, in the presence of an unknown word, using the component characters in the word to help predict the correct POS is a good heuristic.
- The all-at-once approach, which considers all aspects of available information in an integrated, unified framework, can make better informed decisions but incurs a higher computational cost.

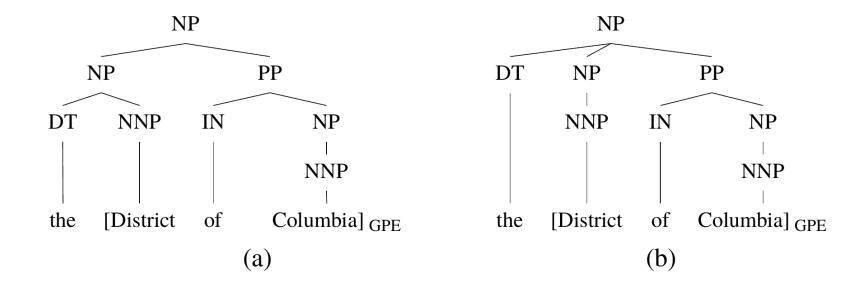
Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or character-based?." *EMNLP*. 2004.

• A joint model of both parsing and named entity recognition.



Finkel, Jenny Rose, and Christopher D. Manning. "Joint parsing and named entity recognition." *Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics*. Association for Computational Linguistics, 2009.

 A feature-based CRF-CFG parser operating over tree structures augmented with NER information.



Finkel, Jenny Rose, and Christopher D. Manning. "Joint parsing and named entity recognition." *Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics*. Association for Computational Linguistics, 2009.

Data : LDC2008T04 OntoNotes Release 2.0 corpus (Hovy et al., 2006).

|     | Training |         | Testi   | ng      |
|-----|----------|---------|---------|---------|
|     | Range    | # Sent. | Range   | # Sent. |
| ABC | 0–55     | 1195    | 56–69   | 199     |
| CNN | 0–375    | 5092    | 376–437 | 1521    |
| MNB | 0–17     | 509     | 18–25   | 245     |
| NBC | 0–29     | 552     | 30–39   | 149     |
| PRI | 0-89     | 1707    | 90-112  | 394     |
| VOA | 0–198    | 1512    | 199–264 | 383     |

Finkel, Jenny Rose, and Christopher D. Manning. "Joint parsing and named entity recognition." *Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics*. Association for Computational Linguistics, 2009.

#### • Results:

|     |             | Parse Labeled Bracketi |        |                |        |        |        | Training |
|-----|-------------|------------------------|--------|----------------|--------|--------|--------|----------|
|     |             | Precision              | Recall | F              |        |        |        | Time     |
| ABC | Just Parse  | 70.18%                 | 70.12% | <b>70.1</b> 5% |        | _      |        | 25m      |
|     | Just NER    |                        | _      |                | 76.84% | 72.32% | 74.51% |          |
|     | Joint Model | 69.76%                 | 70.23% | 69.99%         | 77.70% | 72.32% | 74.91% | 45m      |
| CNN | Just Parse  | 76.92%                 | 77.14% | 77.03%         |        | _      |        | 16.5h    |
|     | Just NER    |                        | _      |                | 75.56% | 76.00% | 75.78% |          |
|     | Joint Model | 77.43%                 | 77.99% | 77.71%         | 78.73% | 78.67% | 78.70% | 31.7h    |
| MNB | Just Parse  | 63.97%                 | 67.07% | 65.49%         |        | _      |        | 12m      |
|     | Just NER    |                        | _      |                | 72.30% | 54.59% | 62.21% |          |
|     | Joint Model | 63.82\$                | 67.46% | 65.59%         | 71.35% | 62.24% | 66.49% | 19m      |
| NBC | Just Parse  | 59.72%                 | 63.67% | 61.63%         |        | _      |        | 10m      |
|     | Just NER    |                        | _      |                | 67.53% | 60.65% | 63.90% |          |
|     | Joint Model | 60.69%                 | 65.34% | 62.93%         | 71.43% | 64.81% | 67.96% | 17m      |
| PRI | Just Parse  | 76.22%                 | 76.49% | 76.35%         |        | _      |        | 2.4h     |
|     | Just NER    |                        | _      |                | 82.07% | 84.86% | 83.44% |          |
|     | Joint Model | 76.88%                 | 77.95% | 77.41%         | 86.13% | 86.56% | 86.34% | 4.2h     |
| VOA | Just Parse  | 76.56%                 | 75.74% | 76.15%         |        | _      |        | 2.3h     |
|     | Just NER    |                        | _      |                | 82.79% | 75.96% | 79.23% |          |
|     | Joint Model | 77.58%                 | 77.45% | 77.51%         | 88.37% | 87.98% | 88.18% | 4.4h     |

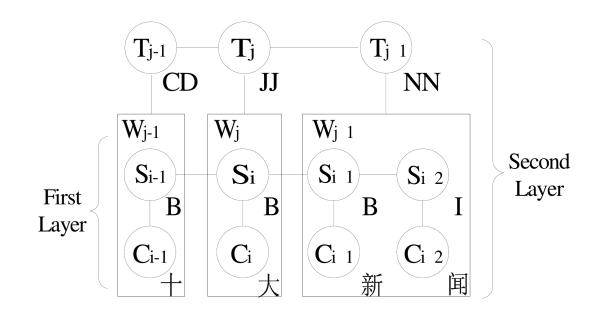
Finkel, Jenny Rose, and Christopher D. Manning. "Joint parsing and named entity recognition." *Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics*. Association for Computational Linguistics, 2009.

- Joint Label Structure
- Reranking
- Joint Modeling (Multi task)
- Joint Modeling (Single task)

- This method performs joint decoding of separately trained Conditional Random Field(CRF) models, while guarding against violations of hard-constraints.
- Separately trained, reranking.
- Use tag sequence score to rank segmentation.

Shi, Yanxin, and Mengqiu Wang. "A Dual-layer CRFs Based Joint Decoding Method for Cascaded Segmentation and Labeling Tasks." *IJcAI*. 2007.

• Dual-layer CRFs



Shi, Yanxin, and Mengqiu Wang. "A Dual-layer CRFs Based Joint Decoding Method for Cascaded Segmentation and Labeling Tasks." *IJcAI*. 2007.

#### Results on Segmentation

|                            | 1     | 2     | 3     | 4            | 5            | 6     |
|----------------------------|-------|-------|-------|--------------|--------------|-------|
|                            |       |       |       | 96.7%        |              |       |
| Joint decoding             | 97.4% | 97.3% | 95.7% | 96.9%        | 96.4%        | 93.4% |
|                            |       |       |       |              |              |       |
|                            | 7     | 8     | 9     | 10           | aver         | rage  |
| Baseline<br>Joint decoding |       |       |       | 10<br>96.2 % | aver<br>95.8 | U     |

|                | AS    |         |                    | СТВ        |         |           |  |
|----------------|-------|---------|--------------------|------------|---------|-----------|--|
|                | P     | R       | <i>F1</i>          | P          | R       | F1        |  |
| Baseline       | 96.7% | 96.8%   | 96.7%              | 88.5%      | 88.3%   | 88.4%     |  |
| Joint Decoding | 96.9% | 96.7%   | 96.8%              | 89.4%      | 88.7%   | 89.1%     |  |
|                |       |         |                    |            |         |           |  |
|                |       | РК      |                    |            | HK      |           |  |
|                | Р     | PK<br>R | F1                 | P          | HK<br>R | <i>F1</i> |  |
| Baseline       | I     | R       | <i>F1</i><br>94.9% | Р<br>94.9% | R       | 11        |  |

|                 | ASo   | СТВо  | НКо   | РКо   | S-Avg | O-Avg         |
|-----------------|-------|-------|-------|-------|-------|---------------|
| S01             |       | 88.1% |       | 95.3% | 91.7% | 92.2%         |
| S02             |       | 91.2% |       |       | 91.2% | 89.1%         |
| S03             | 87.2% | 82.9% | 88.6% | 92.5% | 87.8% | 94.1%         |
| S04             |       |       |       | 93.7% | 93.7% | 95.2%         |
| S07             |       |       |       | 94.0% | 94.0% | 95.2%         |
| S08             |       |       | 95.6% | 93.8% | 94.7% | 95.2%         |
| S10             |       | 90.1% |       | 95.9% | 93.0% | 92.2%         |
| S11             | 90.4% | 88.4% | 87.9% | 88.6% | 88.8% | 94.1%         |
| Peng et al. '04 | 95.7% | 89.4% | 94.6% | 94.6% | 93.6% | <b>94.1</b> % |
| Our System      | 96.8% | 89.1% | 95.2% | 95.2% |       | 94.1%         |

Shi, Yanxin, and Mengqiu Wang. "A Dual-layer CRFs Based Joint Decoding Method for Cascaded Segmentation and Labeling Tasks." *IJcAI*. 2007.

• Results on POS Tagging

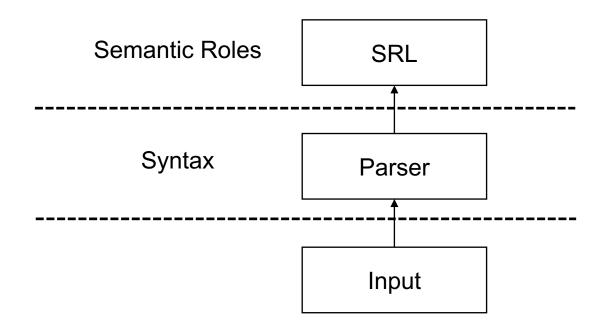
|                            | 1     | 2     | 3     | 4      | 5     | 6     |
|----------------------------|-------|-------|-------|--------|-------|-------|
|                            |       |       |       | 92.0%  |       |       |
| Joint Decoding             | 94.0% | 93.9% | 90.4% | 92.2%  | 93.4% | 87.5% |
|                            |       | 1     |       | 1      |       |       |
|                            | 7     | 8     | 9     | 10     | aver  | rage  |
| Baseline<br>Joint Decoding |       |       |       | 92.0 % |       | U     |

Shi, Yanxin, and Mengqiu Wang. "A Dual-layer CRFs Based Joint Decoding Method for Cascaded Segmentation and Labeling Tasks." *IJcAI*. 2007.

 The goal of this investigation is to narrow the gap between SRL results from gold parses and from automatic parses. The paper aims to achieve this by jointly performing parsing and semantic role labeling in a single probabilistic model. In both parsing and SRL, state-of-the-art systems are probabilistic; therefore, their predictions can be combined in a principled way by multiplying probabilities. This paper rerank the k-best parse trees from a probabilistic parser using an SRL system.

Sutton, Charles, and Andrew McCallum. "Joint parsing and semantic role labeling." *Proceedings of the Ninth Conference on Computational Natural Language Learning*. Association for Computational Linguistics, 2005.

Task



Sutton, Charles, and Andrew McCallum. "Joint parsing and semantic role labeling." *Proceedings of the Ninth Conference on Computational Natural Language Learning*. Association for Computational Linguistics, 2005.

Overall results

|                | Precision | Recall | $F_{\beta=1}$ |
|----------------|-----------|--------|---------------|
| Development    | 64.43%    | 63.11% | 63.76         |
| Test WSJ       | 68.57%    | 64.99% | 66.73         |
| Test Brown     | 62.91%    | 54.85% | 58.60         |
| Test WSJ+Brown | 67.86%    | 63.63% | 65.68         |

Sutton, Charles, and Andrew McCallum. "Joint parsing and semantic role labeling." *Proceedings of the Ninth Conference on Computational Natural Language Learning*. Association for Computational Linguistics, 2005.

#### • Detailed results on the WSJ test

| Test WSJ         | Precision | Recall  | $F_{\beta=1}$ | ] |          | 46.08% | 40.87% | 43.32 |
|------------------|-----------|---------|---------------|---|----------|--------|--------|-------|
| Overall          | 68.57%    | 64.99%  | 66.73         | 1 | AM-PNC   |        |        |       |
| AO               | 69.47%    | 74.35%  | 71.83         | 1 | AM-PRD   | 0.00%  |        | 0.00  |
| A1               | 66.90%    | 64.91%  | 65.89         |   | AM-REC   | 0.00%  | 0.00%  | 0.00  |
| A2               | 64.42%    | 61.17%  | 62.75         |   | AM-TMP   | 72.15% | 67.43% | 69.71 |
| A3               | 62.14%    | 50.29%  | 55.59         |   | R-A0     | 0.00%  | 0.00%  | 0.00  |
| A4               | 72.73%    | 70.59%  | 71.64         |   | R-A1     | 0.00%  | 0.00%  | 0.00  |
| A5               | 50.00%    | 20.00%  | 28.57         |   | R-A2     | 0.00%  | 0.00%  | 0.00  |
| AM-ADV           | 55.90%    | 49.60%  | 52.57         |   | R-A3     | 0.00%  | 0.00%  | 0.00  |
| AM-CAU           | 76.60%    | 49.32%  | 60.00         |   | R-A4     | 0.00%  | 0.00%  | 0.00  |
| AM-DIR           | 57.89%    | 38.82%  | 46.48         |   | R-AM-ADV | 0.00%  | 0.00%  | 0.00  |
| AM-DIS           | 79.73%    | 73.75%  | 76.62         |   | R-AM-CAU | 0.00%  | 0.00%  | 0.00  |
| AM-EXT           | 66.67%    | 43.75%  | 52.83         |   | R-AM-EXT | 0.00%  | 0.00%  | 0.00  |
| AM-LOC           | 50.26%    | 53.17%  | 51.67         |   | R-AM-LOC | 0.00%  | 0.00%  | 0.00  |
| AM-LOC<br>AM-MNR | 54.32%    | 51.16%  | 52.69         |   | R-AM-MNR | 0.00%  | 0.00%  | 0.00  |
| AM-MOD           | 98.50%    | 95.46%  | 96.96         |   | R-AM-TMP | 0.00%  | 0.00%  | 0.00  |
| AM-NEG           | 98.30%    | 93.40%  | 96.90         |   | V        | 99.21% | 86.24% | 92.27 |
| AM-NG            | 90.2070   | 24.7070 | 90.40         |   |          |        |        | J     |

Sutton, Charles, and Andrew McCallum. "Joint parsing and semantic role labeling." *Proceedings of the Ninth Conference on Computational Natural Language Learning*. Association for Computational Linguistics, 2005.

- Joint Label Structure
- Reranking
- Joint Modeling (Multi task)
- Joint Modeling (Single task)

# Joint Modeling

- Joint Search, separate training
- Search complex problem
  - ILP
  - BP
  - Dual Decomposition

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated CCG supertagging and parsing." *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1*. Association for Computational Linguistics, 2011.

 A model that jointly identifies opinion-related entities, including opinion expressions, opinion targets and opinion holders as well as the associated opinion linking relations, IS-ABOUT and IS-FROM.

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

#### • Example:

- Opinion linking relations
  - The numberic subscripts denote linking relations, one of IS-ABOUT OR IS-FROM
- Opinion entities:
  - Opinion expressions: O
  - Opinion targets: T
  - Opinion holders: H

jointly identifies opinionrelated entities, as well as opinion linking relations

[The workers]<sub>[H1,2]</sub> were irked  $[O_1]$  by [the government report]<sub>[T1]</sub>

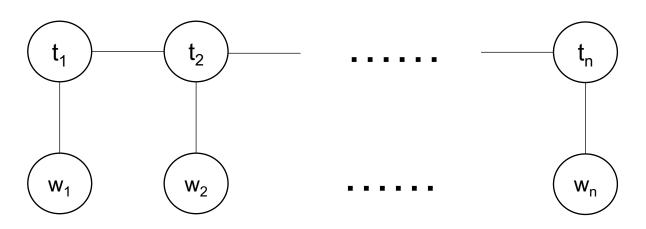
and were worried  $[O_2]$  as they went about their daily chores.

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

- Model
  - Formulate the task of opinion entity identification as a sequence labeling problem and employ conditional random fields (CRFs) to learn the probability of a sequence assignment y for a given sentence x; Then, it treat the relation extraction problem as a combination of two binary classification problems and use L1-regularized logistic regression to train the classifiers; finally optimize the joint objective function which is defined as a linear combination of the potentials from different predictors with a parameter λ to balance the contribution of these two components: opinion entity identification and opinion relation extraction.

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

#### • CRF



- D Opinion expression
- T Opinion target
- H Opinion Holder
- N Opinion None

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

- A model for opinion target relation
- A model for opinion holder relation

Joint training objective by linearposition

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

#### • ILP for search

- Constraint 1: Uniqueness
- Constraint 2: Non-overlapping
- Constraint 3: Consistency between the opinion-arg and opinion-implicitarg classifiers
- Constraint 4: Consistency between opinion-arg classifier and opinion entity extractor
- Constraint 5: Consistency between the opinion-implicit-arg classifier and opinion entity extractor

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

#### Results on Opinion Entity Extraction

|             | <b>Opinion Expression</b> |       |                | Ο     | pinion Ta | arget           | <b>Opinion Holder</b> |       |                 |  |
|-------------|---------------------------|-------|----------------|-------|-----------|-----------------|-----------------------|-------|-----------------|--|
| Method      | Р                         | R     | <b>F1</b>      | Р     | R         | <b>F1</b>       | Р                     | R     | <b>F1</b>       |  |
| CRF         | 82.21                     | 66.15 | 73.31          | 73.22 | 48.58     | 58.41           | 72.32                 | 49.09 | 58.48           |  |
| CRF+Adj     | 82.21                     | 66.15 | 73.31          | 80.87 | 42.31     | 55.56           | 75.24                 | 48.48 | 58.97           |  |
| CRF+Syn     | 82.21                     | 66.15 | 73.31          | 81.87 | 30.36     | 44.29           | 78.97                 | 40.20 | 53.28           |  |
| CRF+RE      | 83.02                     | 48.99 | 61.62          | 85.07 | 22.01     | 34.97           | 78.13                 | 40.40 | 53.26           |  |
| Joint-Model | 71.16                     | 77.85 | 74.35*         | 75.18 | 57.12     | <b>64.92</b> ** | 67.01                 | 66.46 | <b>66.73</b> ** |  |
| CRF         | 66.60                     | 52.57 | 58.76          | 44.44 | 29.60     | 35.54           | 65.18                 | 44.24 | 52.71           |  |
| CRF+Adj     | 66.60                     | 52.57 | 58.76          | 49.10 | 25.81     | 33.83           | 68.03                 | 43.84 | 53.32           |  |
| CRF+Syn     | 66.60                     | 52.57 | 58.76          | 50.26 | 18.41     | 26.94           | 74.60                 | 37.98 | 50.33           |  |
| CRF+RE      | 69.27                     | 40.09 | 50.79          | 60.45 | 15.37     | 24.51           | 75                    | 38.79 | 51.13           |  |
| Joint-Model | 57.39                     | 62.40 | <b>59.79</b> * | 49.15 | 38.33     | 43.07**         | 62.73                 | 62.22 | <b>62.47</b> ** |  |

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

• Results on Opinion Relation Extraction

|                        |       | IS-ABOU | JT        | IS-FROM |       |           |  |  |
|------------------------|-------|---------|-----------|---------|-------|-----------|--|--|
| Method                 | Р     | R       | <b>F1</b> | Р       | R     | <b>F1</b> |  |  |
| CRF+Adj                | 73.65 | 37.34   | 49.55     | 70.22   | 41.58 | 52.23     |  |  |
| CRF+Syn                | 76.21 | 28.28   | 41.25     | 77.48   | 36.63 | 49.74     |  |  |
| CRF+RE                 | 78.26 | 20.33   | 32.28     | 74.81   | 37.55 | 50.00     |  |  |
| CRF+Adj-merged-10-best | 25.05 | 61.18   | 35.55     | 30.28   | 62.82 | 40.87     |  |  |
| CRF+Syn-merged-10-best | 41.60 | 45.66   | 43.53     | 48.08   | 54.03 | 50.88     |  |  |
| CRF+RE-merged-10-best  | 51.60 | 33.09   | 40.32     | 47.73   | 54.40 | 50.84     |  |  |
| Joint-Model            | 64.38 | 51.20   | 57.04**   | 64.97   | 58.61 | 61.63**   |  |  |

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

# Joint Supertagging and Parsing

• This method is a single model with both supertagging and parsing features, rather than separating them into distinct models chained together in a pipeline.

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated CCG supertagging and parsing." *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1*. Association for Computational Linguistics, 2011.

 CCG parsing (for English, Chinese and other languages) is to find the syntactic structures of written text based on combinatory categorial grammars.

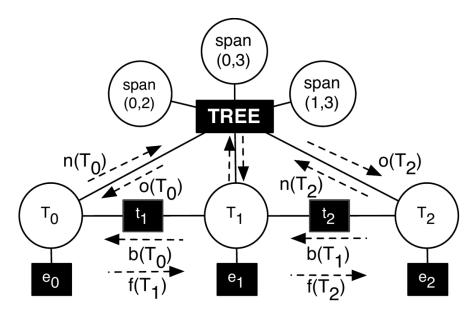
| Marcel                     | proved     | completeness |  |  |  |  |  |  |  |
|----------------------------|------------|--------------|--|--|--|--|--|--|--|
| NP                         | (S\ NP)/NP | NP           |  |  |  |  |  |  |  |
|                            | S\ NP      |              |  |  |  |  |  |  |  |
| S                          |            |              |  |  |  |  |  |  |  |
| Supper tagging and parsing |            |              |  |  |  |  |  |  |  |

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated CCG supertagging and parsing." *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1*. Association for Computational Linguistics, 2011.

CCG traditionally done by supertagging -> parsing

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated CCG supertagging and parsing." *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1*. Association for Computational Linguistics, 2011.

- Loopy belief propagation and dual decomposition
- Factor graph for the combined parsing and supertagging model



Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated CCG supertagging and parsing." *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1*. Association for Computational Linguistics, 2011.

 $\arg \max_{y \in Y, z \in Z} f(y) + g(z) \tag{9}$ such that y(i, t) = z(i, t) for all  $(i, t) \in I$  (10)

$$L(u) = \max_{y \in Y} (f(y) - \sum_{i,t} u(i,t)y(i,t))$$
(11  
+ 
$$\max_{z \in Z} (f(z) + \sum_{i,t} u(i,t)z(i,t))$$

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated CCG supertagging and parsing." *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1*. Association for Computational Linguistics, 2011.

#### Results

|             | section 00 (dev) |       |       |         |       |       | section 23 (test) |       |       |         |       |       |
|-------------|------------------|-------|-------|---------|-------|-------|-------------------|-------|-------|---------|-------|-------|
|             | AST              |       |       | Reverse |       |       | AST               |       |       | Reverse |       |       |
|             | LF               | UF    | ST    | LF      | UF    | ST    | LF                | UF    | ST    | LF      | UF    | ST    |
| Baseline    | 87.38            | 93.08 | 94.21 | 87.36   | 93.13 | 93.99 | 87.73             | 93.09 | 94.33 | 87.65   | 93.06 | 94.01 |
| C&C '07     | 87.24            | 93.00 | 94.16 | -       | -     | -     | 87.64             | 93.00 | 94.32 | -       | -     | -     |
| $BP_{k=1}$  | 87.70            | 93.28 | 94.44 | 88.35   | 93.69 | 94.73 | 88.20             | 93.28 | 94.60 | 88.78   | 93.66 | 94.81 |
| $BP_{k=25}$ | 87.70            | 93.31 | 94.44 | 88.33   | 93.72 | 94.71 | 88.19             | 93.27 | 94.59 | 88.80   | 93.68 | 94.81 |
| $DD_{k=1}$  | 87.40            | 93.09 | 94.23 | 87.38   | 93.15 | 94.03 | 87.74             | 93.10 | 94.33 | 87.67   | 93.07 | 94.02 |
| $DD_{k=25}$ | 87.71            | 93.32 | 94.44 | 88.29   | 93.71 | 94.67 | 88.14             | 93.24 | 94.59 | 88.80   | 93.68 | 94.82 |

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated CCG supertagging and parsing." *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1*. Association for Computational Linguistics, 2011.

## **Graph-Based Methods**

- Joint Label Structure
- Reranking
- Joint Modeling (Multi task)
- Joint Modeling (Single task)

# Joint Modeling (Single task)

A Single Model

Score =  $\Phi(y) \cdot \vec{\omega}$ here y is the model features

 This paper propose a joint segmentation and POS tagging model that does not impose any hard constraints on the interaction between word and POS information. Fast decoding is achieved by using a novel multiple-beam search algorithm. The system uses a discriminative statistical model, trained using the generalized perceptron algorithm.

Input 我喜欢读书 Ilikereadingbooks

Output 我/PN 喜欢/V 读/V 书/N I/PN like/V reading/V books/N

Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." *ACL*. 2008.

 The averaged perceptron algorithm is adopted with the union of feature templates from the baseline segmentor and POS tagger as the feature templates

```
Inputs: training examples (x_i, y_i)

Initialization: set \vec{w} = 0

Algorithm:

for t = 1..T, i = 1..N

calculate z_i = \arg \max_{y \in \text{GEN}(x_i)} \Phi(y) \cdot \vec{w}

if z_i \neq y_i

\vec{w} = \vec{w} + \Phi(y_i) - \Phi(z_i)

Outputs: \vec{w}
```

The perceptron learning algorithm

Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." *ACL*. 2008.

• Feature templates for the baseline segmentor

| 1 | word w                                                | 9  | word $w$ immediately before character $c$           |
|---|-------------------------------------------------------|----|-----------------------------------------------------|
| 2 | word bigram $w_1w_2$                                  | 10 | character $c$ immediately before word $w$           |
| 3 | single-character word $w$                             | 11 | the starting characters $c_1$ and $c_2$ of two con- |
| 4 | a word of length $l$ with starting character $c$      |    | secutive words                                      |
| 5 | a word of length $l$ with ending character $c$        | 12 | the ending characters $c_1$ and $c_2$ of two con-   |
| 6 | space-separated characters $c_1$ and $c_2$            |    | secutive words                                      |
| 7 | character bigram $c_1c_2$ in any word                 | 13 | a word of length $l$ with previous word $w$         |
| 8 | the first / last characters $c_1$ / $c_2$ of any word | 14 | a word of length $l$ with next word $w$             |

Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." *ACL*. 2008.

• Feature templates for the baseline POS tagger

| 1  | tag $t$ with word $w$                    | 11 | tag $t$ on a word containing char $c$ (not the  |
|----|------------------------------------------|----|-------------------------------------------------|
| 2  | tag bigram $t_1 t_2$                     |    | starting or ending character)                   |
| 3  | tag trigram $t_1 t_2 t_3$                | 12 | tag t on a word starting with char $c_0$ and    |
| 4  | tag $t$ followed by we                   |    | containing char $c$                             |
| 5  | word $w$ followed by                     | 13 | tag $t$ on a word ending with char $c_0$ and    |
| 6  | word $w$ with tag $t$ ar                 |    | containing char c                               |
| 7  | word $w$ with tag $t$ ar                 | 14 | tag $t$ on a word containing repeated char $cc$ |
| 8  | tag $t$ on single-chara                  | 15 | tag $t$ on a word starting with character cat-  |
|    | ter trigram $c_1wc_2$                    |    | egory g                                         |
| 9  | tag $t$ on a word starting with char $c$ | 16 | tag $t$ on a word ending with character cate-   |
| 10 | tag $t$ on a word ending with char $c$   |    | gory g                                          |

Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." *ACL*. 2008.

• The decoding algorithm for the joint word segmentor and POS tagger, agendas[*i*] stores the best sequences that end at *i* 

Input: raw sentence sent - a list of characters Variables: candidate sentence item - a list of (word, tag) pairs; maximum word-length record maxlen for each tag; the agenda list agendas; the tag dictionary tagdict; start\_index for current word; end\_index for current word Initialization: agendas[0] = ["""],agendas[i] = [] (i! = 0)

#### Algorithm:

```
for end\_index = 1 to sent.length:

for end\_index = 1

for start\_index = max(1, end\_index - maxlen[tag] + 1)

to end\_index:

word = sent[start\_index..end\_i

if (word, tag) consistent with tag

for item \in agendas[start\_ind

item_1 = item

item_1.append((word, tag)))

agendas[end\_index].insert(item_1)

Outputs: agendas[sent.length].best\_item
```

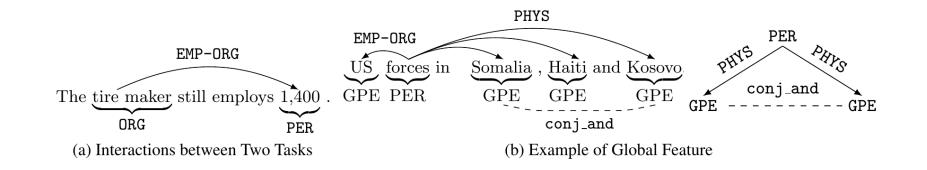
Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." *ACL*. 2008.

The comparison of overall accuracies by 10-fold cross validation using CTB

| Model            | SF    | TF    | TA    |
|------------------|-------|-------|-------|
| Baseline+ (Ng)   | 95.1  | _     | 91.7  |
| Joint+ (Ng)      | 95.2  | _     | 91.9  |
| Baseline+* (Shi) | 95.85 | 91.67 | _     |
| Joint+* (Shi)    | 96.05 | 91.86 | _     |
| Baseline (ours)  | 95.20 | 90.33 | 92.17 |
| Joint (ours)     | 95.90 | 91.34 | 93.02 |

Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." *ACL*. 2008.

 An incremental joint framework to simultaneously extract entity mentions and relations using structured perceptron with efficient beam-search. A segment-based decoder based on the idea of semi-Markov chain is adopted to the new framework as opposed to traditional token-based tagging.



Li, Qi, and Heng Ji. "Incremental Joint Extraction of Entity Mentions and Relations." ACL (1). 2014.

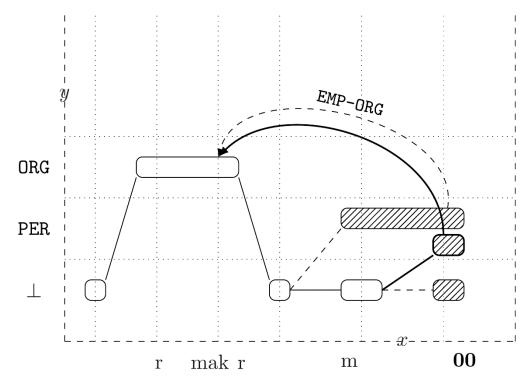
- Similar idea to (Zhang and Clark 2008)
  - A Single Model

$$\hat{y} = \operatorname*{argmax}_{y' \in \mathcal{Y}(x)} \mathbf{f}(x, y') \cdot \mathbf{w}$$

Beam Search

Li, Qi, and Heng Ji. "Incremental Joint Extraction of Entity Mentions and Relations." ACL (1). 2014.

• Example of decoding steps



Li, Qi, and Heng Ji. "Incremental Joint Extraction of Entity Mentions and Relations." ACL (1). 2014.

#### • Feature

- Local features
  - Gazetteer features
  - Case features
  - Contextual features
  - Parsing-based features
- Global entity mention features
  - Coreference consistency
  - Neighbor coherence
  - Part-of-whole consistency
- Global relation features
  - Role coherence
  - Triangle constraint
  - Inter-dependent compatibility
  - Neighbor coherence

- Experiments
  - Data:
    - Training data: ACE'05
    - Validation data: ACE'04

#### Results

| Model           | Entity Mention (%) |      |       | Relation (%) |      |       | Entity Mention + Relation (%) |      |       |
|-----------------|--------------------|------|-------|--------------|------|-------|-------------------------------|------|-------|
| Score           | Р                  | R    | $F_1$ | Р            | R    | $F_1$ | Р                             | R    | $F_1$ |
| Pipeline        | 83.2               | 73.6 | 78.1  | 67.5         | 39.4 | 49.8  | 65.1                          | 38.1 | 48.0  |
| Joint w/ Local  | 84.5               | 76.0 | 80.0  | 68.4         | 40.1 | 50.6  | 65.3                          | 38.3 | 48.3  |
| Joint w/ Global | 85.2               | 76.9 | 80.8  | 68.9         | 41.9 | 52.1  | 65.4                          | 39.8 | 49.5  |
| Annotator 1     | 91.8               | 89.9 | 90.9  | 71.9         | 69.0 | 70.4  | 69.5                          | 66.7 | 68.1  |
| Annotator 2     | 88.7               | 88.3 | 88.5  | 65.2         | 63.6 | 64.4  | 61.8                          | 60.2 | 61.0  |
| Inter-Agreement | 85.8               | 87.3 | 86.5  | 55.4         | 54.7 | 55.0  | 52.3                          | 51.6 | 51.9  |

Li, Qi, and Heng Ji. "Incremental Joint Extraction of Entity Mentions and Relations." ACL (1). 2014.

#### **Statistical Models**

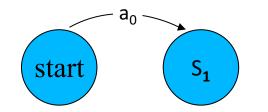
- Graph-Based Methods
- Transition-Based Methods

- State
  - Start state an empty structure
  - End state —— the output structure
  - Intermediate states partially constructed structures
- Actions
  - Change one state to another

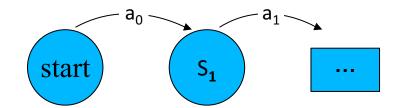
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



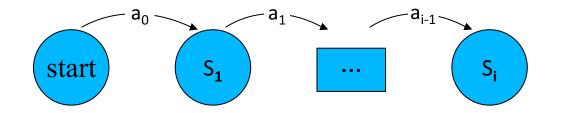
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

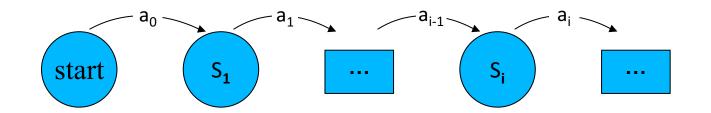


Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



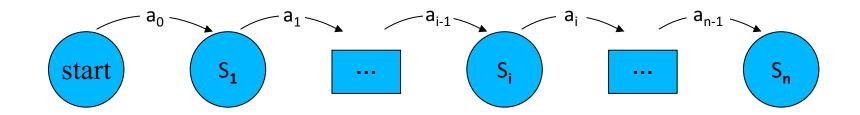
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

Automata



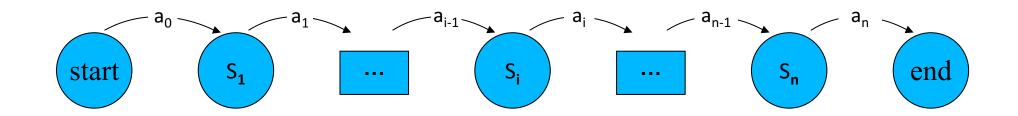
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

Automata



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

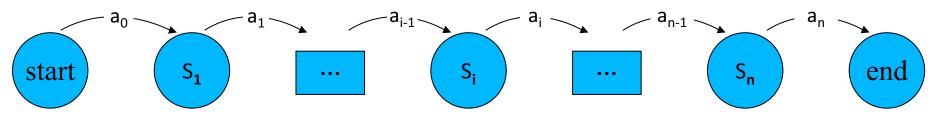
Automata



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

#### State

- · Corresponds to partial results during decoding
  - start state, end state, S<sub>i</sub>



- Actions
  - The operations that can be applied for state transition
  - Construct output incrementally
    - a<sub>i</sub>

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- An Example
  - S-SHIFT
  - R-REDUCE
  - AL-ARC-LEFT
  - AR-ARC-RIGHT

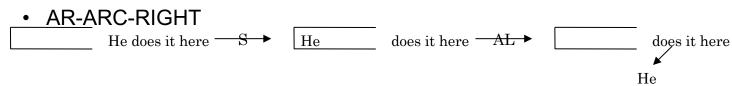
He does it here

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- An Example
  - S-SHIFT
  - R-REDUCE
  - AL-ARC-LEFT
  - AR-ARC-RIGHT He does it here → He does it here

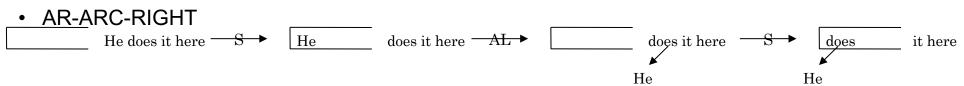
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- An Example
  - S-SHIFT
  - R-REDUCE
  - AL-ARC-LEFT



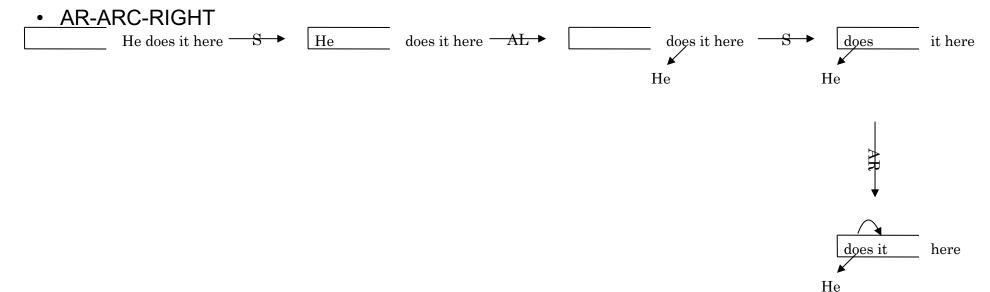
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- An Example
  - S-SHIFT
  - R-REDUCE
  - AL-ARC-LEFT



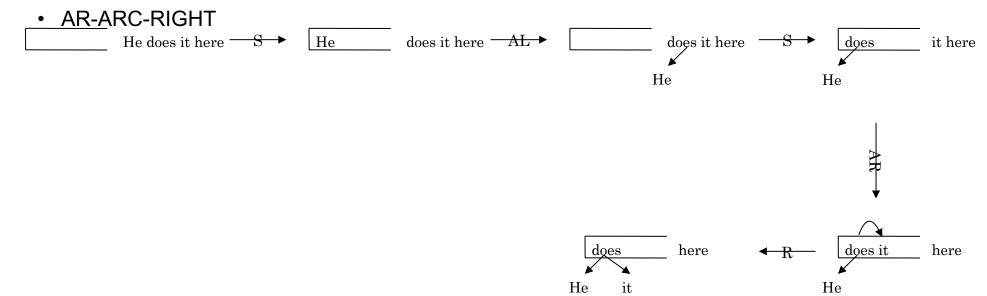
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- An Example
  - S-SHIFT
  - R-REDUCE
  - AL-ARC-LEFT



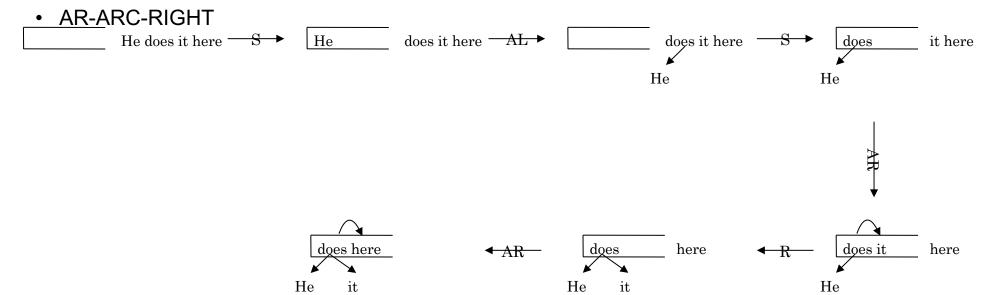
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- An Example
  - S-SHIFT
  - R-REDUCE
  - AL-ARC-LEFT



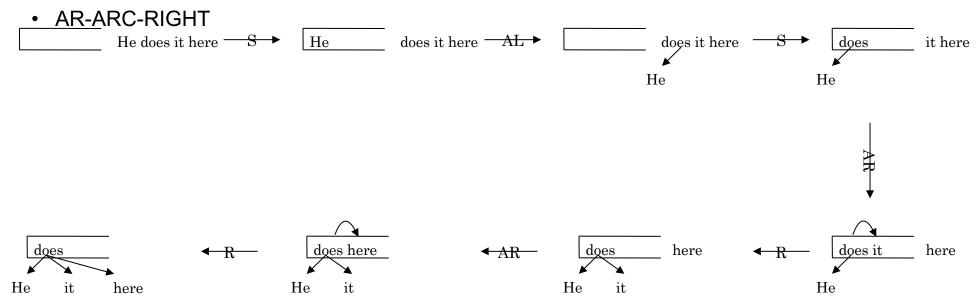
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- An Example
  - S-SHIFT
  - R-REDUCE
  - AL-ARC-LEFT



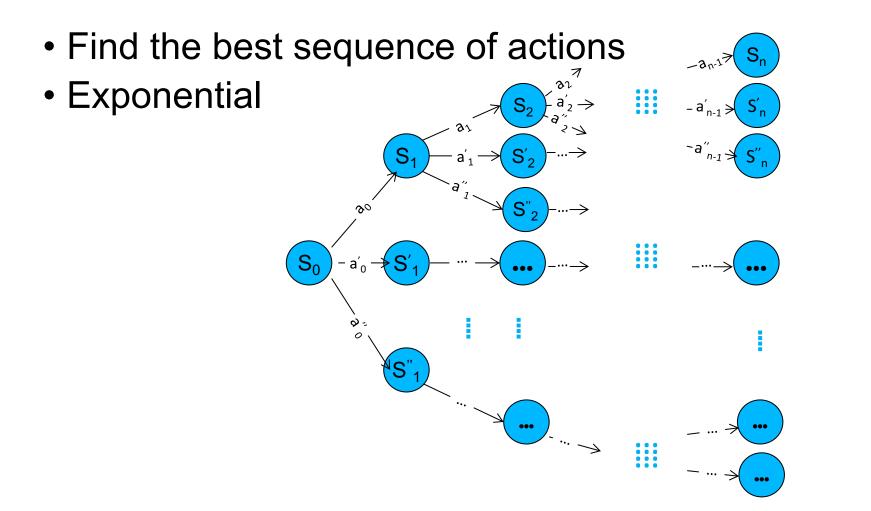
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- An Example
  - S-SHIFT
  - R-REDUCE
  - AL-ARC-LEFT



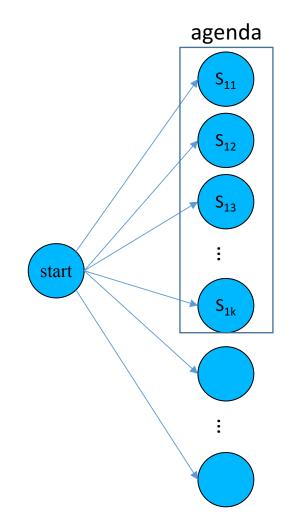
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

### Search Space

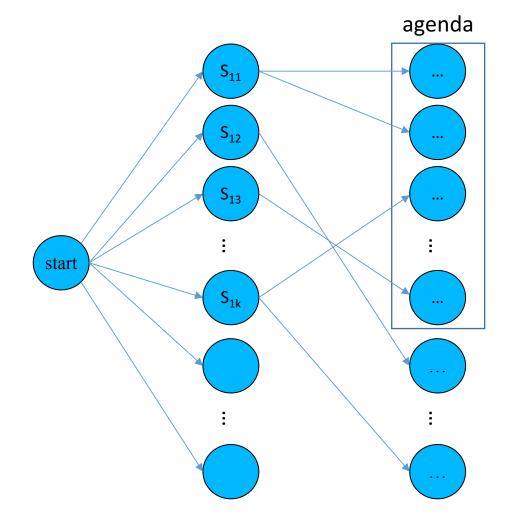


Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

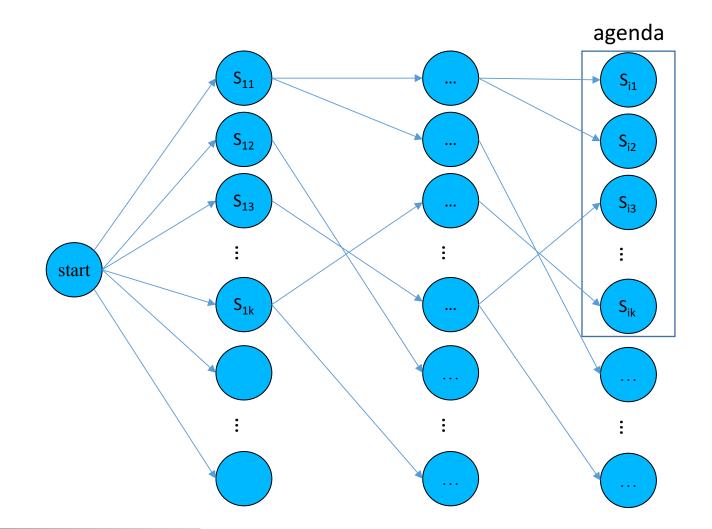
start



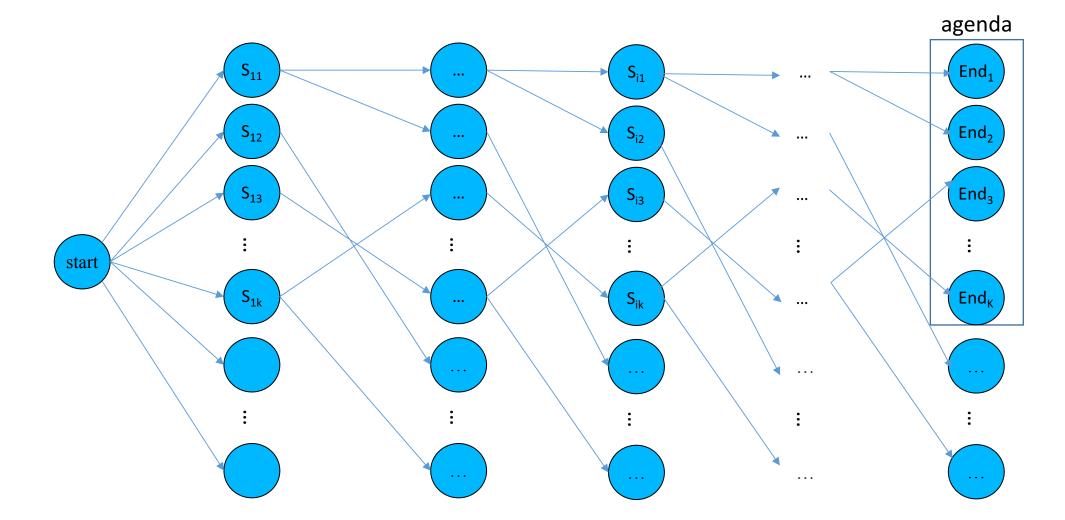
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

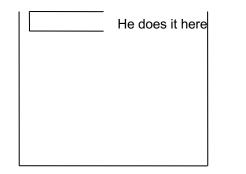


Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



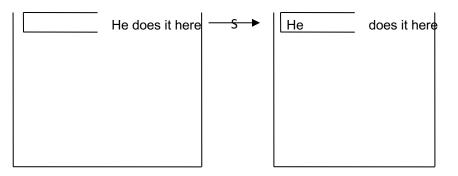
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- Dependency Parsing Example
  - Decoding



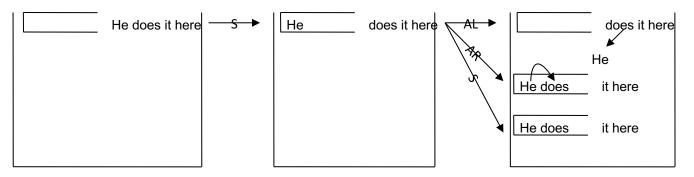
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- Dependency Parsing Example
  - Decoding



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

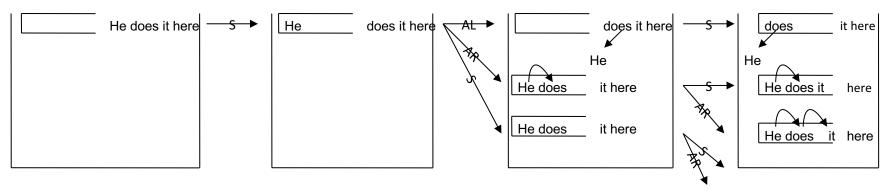
- Dependency Parsing Example
  - Decoding



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

#### Dependency Parsing Example

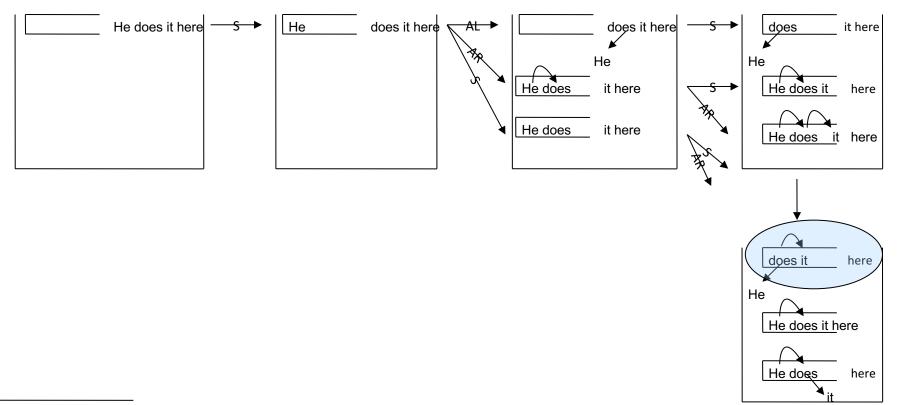
• Decoding



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

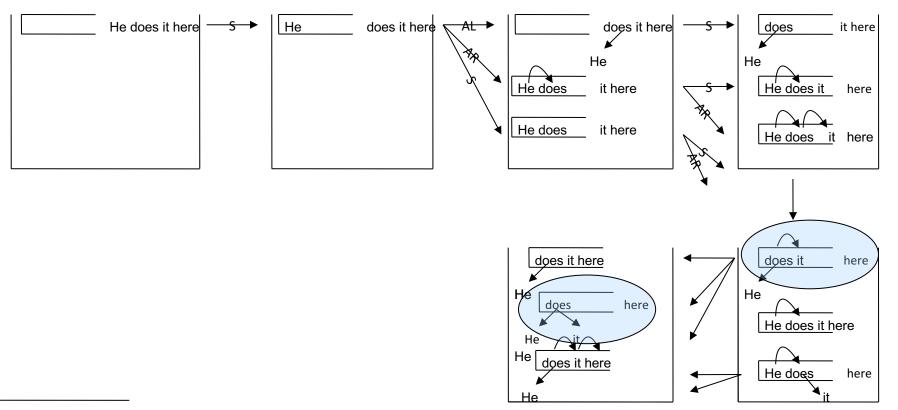
#### Dependency Parsing Example

• Decoding



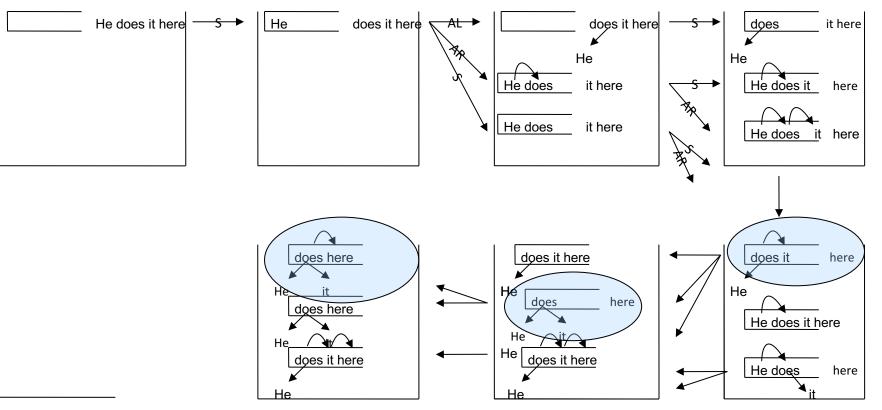
#### Dependency Parsing Example

• Decoding



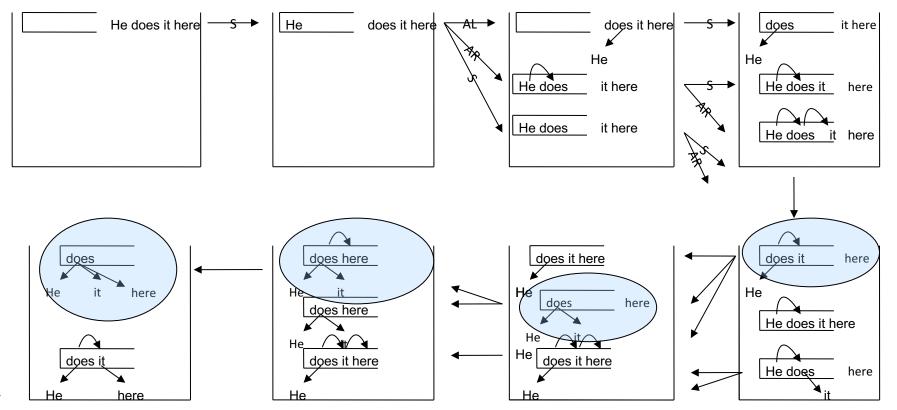
#### Dependency Parsing Example

• Decoding



#### Dependency Parsing Example

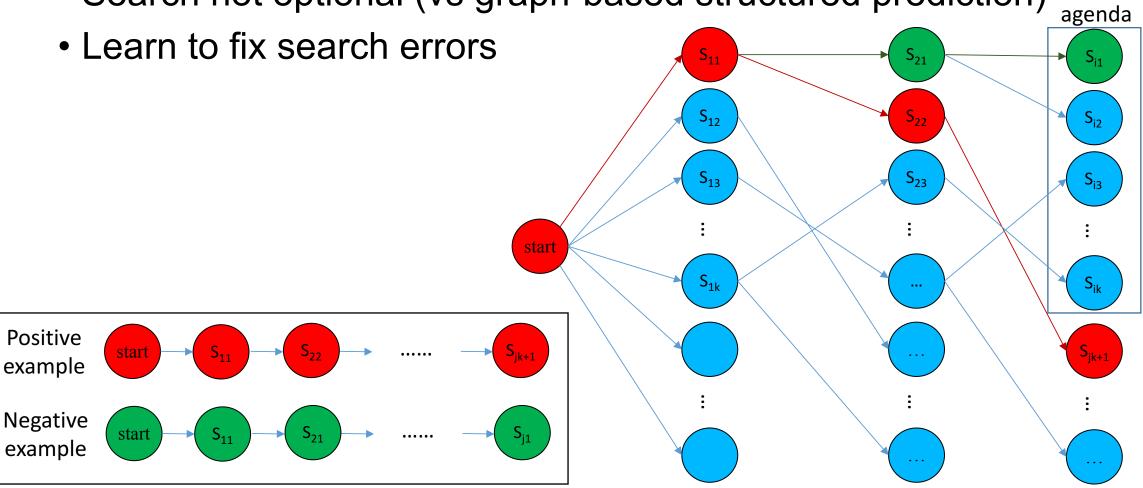
• Decoding



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

### Learning guided search

• Search not optional (vs graph-based structured prediction)



### Advantages

- Low computation complexity
- Arbitrary linear features
  - Enabled by learning-guided-search

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

### Advantages

#### State-of-the-art accuracies and speeds

- For a wide range of tasks
- Enable joint models
  - Address complex search space and use joint features, which have been difficult for traditional models

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- The transition system
  - State
    - Partial segmented results
    - Unprocessed characters
  - Two actions
    - Separate (t) : t is a POS tag
    - Append

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

- The transition system
  - Initial state



我喜欢读书

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

- The transition system
  - Separate(PN)

| 我/PN |  |  |
|------|--|--|
|------|--|--|

喜欢读书

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

- The transition system
  - Separate (V)

| 我/PN |
|------|
|------|

欢读书

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

- The transition system
  - Append

我/PN 喜欢/V

读书

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

- The transition system
  - Separate (V)

我/PN 喜欢/V 读/V

书

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

- The transition system
  - Separate (N)

我/PN 喜欢/V 读/V 书/N

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

- The transition system
  - End state

我/PN 喜欢/V 读/V 书/N

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

#### • Feature templates

Feature templates for the word segmentor.

|                | Feature template                                                 | When $c_0$ is                       |  |
|----------------|------------------------------------------------------------------|-------------------------------------|--|
| 1<br>2<br>3    | $w_{-1}$<br>$w_{-1}w_{-2}$<br>$w_{-1}$ , where $len(w_{-1}) = 1$ | separated<br>separated<br>separated |  |
| 4<br>5         | $start(w_{-1})len(w_{-1})$<br>end(w_{-1})len(w_{-1})             | separated<br>separated              |  |
| 6<br>7         | $end(w_{-1})c_{0}$<br>$c_{-1}c_{0}$                              | separated<br>appended               |  |
| 8<br>9         | $begin(w_{-1})end(w_{-1})$<br>$w_{-1}c_0$                        | separated<br>separated              |  |
| 10<br>11       | $end(w_{-2})w_{-1}$<br>$start(w_{-1})c_0$                        | separated<br>separated              |  |
| 12<br>13<br>14 | $end(w_{2})end(w_{1})$<br>$w_{2}len(w_{1})$<br>$len(w_{2})w_{1}$ | separated<br>separated<br>separated |  |
| 14             | $w_{-2}w_{-1}$                                                   | separateu                           |  |

w = word; c = character. The index of the current character is 0.

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

#### • Feature templates

POS feature templates for the joint segmentor and POS-tagger.

|        | Feature template                                                          | when $c_0$ is         |
|--------|---------------------------------------------------------------------------|-----------------------|
| 1      | $w_{-1}t_{-1}$                                                            | separated             |
|        | $t_{-1}t_{0}$                                                             | separated             |
| 3      | $t_{-2}t_{-1}t_{0}$                                                       | separated             |
| 4<br>5 | $w_{-1}t_0$                                                               | separated             |
| 5      | $t_{-2}w_{-1}$                                                            | separated             |
| 6      | $w_{-1}t_{-1}end(w_{-2})$                                                 | separated             |
| 7      | $w_{-1}t_{-1}c_{0}$                                                       | separated             |
| 8      | $c_{-2}c_{-1}c_0t_{-1}$ , where $len(w_{-1}) = 1$                         | separated             |
| 9      | $c_0 t_0$                                                                 | separated             |
| 10     | $t_{-1}$ start $(w_{-1})$                                                 | separated             |
| 11     | $t_0 c_0$                                                                 | separated or appended |
| 12     | $c_0 t_0 start(w_0)$                                                      | appended              |
| 13     | $ct_{-1}end(w_{-1})$ , where $c \in w_{-1}$ and $c \neq end(w_{-1})$      | separated             |
| 14     | $c_0 t_0 cat(start(w_0))$                                                 | separated             |
| 15     | $ct_{-1}cat(end(w_{-1}))$ , where $c \in w_{-1}$ and $c \neq end(w_{-1})$ | appended              |
| 16     | $c_0 t_0 c_{-1} t_{-1}$                                                   | separated             |
| 17     | $c_0 t_0 c_{-1}$                                                          | appended              |

w = word; c = character; t = POS-tag. The index of the current character is 0.

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

#### • Experiments

• Penn Chinese Treebank 5 (CTB-5)

|          | CTB files | # sent. | # words |
|----------|-----------|---------|---------|
| Training | 1-270     | 18089   | 493,939 |
|          | 400-1151  |         |         |
| Develop  | 301-325   | 350     | 6,821   |
| Test     | 271-300   | 348     | 8,008   |

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

#### • Experiments

Accuracy comparisons between various joint segmentors and POS-taggers on CTB5

|                    | SF    | JF    |
|--------------------|-------|-------|
| K09 (error-driven) | 97.87 | 93.67 |
| This work          | 97.78 | 93.67 |
| Zhang 2008         | 97.82 | 93.62 |
| K09 (baseline)     | 97.79 | 93.60 |
| J08a               | 97.85 | 93.41 |
| J08b               | 97.74 | 93.37 |
| N07                | 97.83 | 93.32 |

SF = segmentation F-score; JF = joint segmentation and POS-tagging F-score

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

 The observations lead to the solution of joint segmentation, POS-tagging and chunking

Input他到达北京机场。Output[NP 他/NR] [VP 到达/VV] [NP 北京/NR 机场/NN] [O 。/PU]

- The chunking knowledge can potentially improve segmentation, this paper explore a joint model that performs segmentation, POS-tagging and chunking simultaneously.
- To address the sparsity of full chunk features, a semisupervised method is proposed to derive chunk cluster features from large-scale automatically-chunked data.

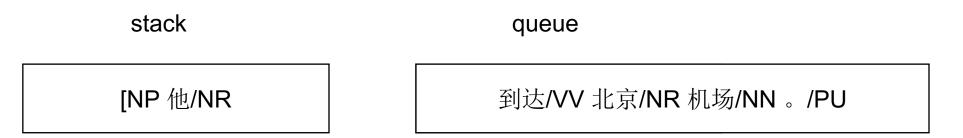
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Word-based chunking example
  - Action: Initial state



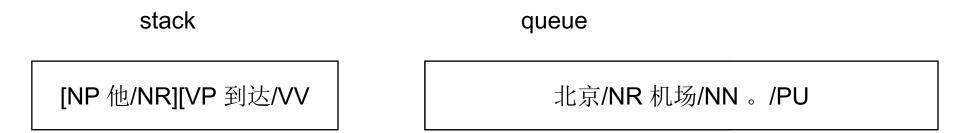
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Word-based chunking example
  - Action: SEP(NP)



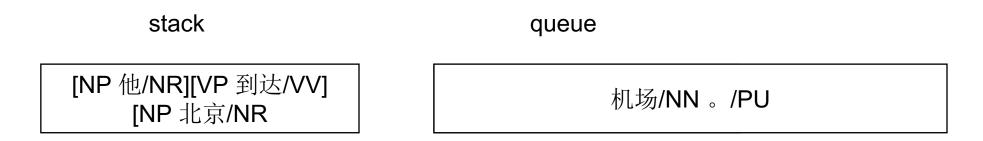
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Word-based chunking example
  - Action: SEP(VP)



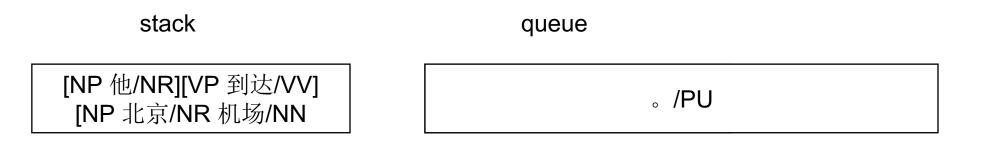
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Word-based chunking example
  - Action: SEP(NP)



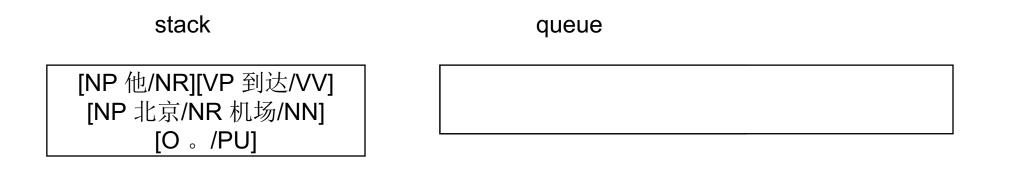
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Word-based chunking example
  - Action: APP(NP)



Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Word-based chunking example
  - Action: SEP(O)



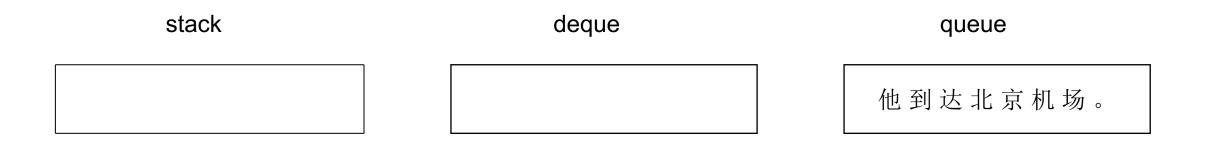
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

#### • Word-based chunking feature template

| ID              | reature remplates                                |    |                                                                     |
|-----------------|--------------------------------------------------|----|---------------------------------------------------------------------|
| 1               | $N_0 w$                                          |    |                                                                     |
| 2               | $N_0 t$                                          | 22 | $end\_word(C_0)T_0$                                                 |
| 3               | $N_1w$                                           | 23 | $end\_POS(C_0)T_0$                                                  |
| 4               | $\tilde{N_1t}$                                   | 24 | $w \cdot end\_word(C_0) \cdot T_0$                                  |
| 5               | $N_2 w$                                          |    | where $w \in C_0$ and $w \neq end\_word(C_0)$                       |
| 6               | $N_2 t$                                          | 25 | $t \cdot end\_POS(C_0) \cdot T_0$                                   |
| 7               | $N_0 w \cdot N_0 t$                              |    | where $t \in POSset(C_0)$ and $p \neq end\_POS(C_0)$                |
| 8               |                                                  | 26 | $w \cdot label(w) \cdot T_0$ for all $w$ in $C_0$                   |
|                 | $N_1w \cdot N_1t$                                | 27 | $bigram(w) \cdot label(w) \cdot T_0$ for all $w$ in $C_0$           |
| 9               | $N_2w\cdot N_2t$                                 | 28 | $biPOS(w) \cdot label(w) \cdot T_0$ for all $w$ in $C_0$            |
| 10              | $N_0w\cdot N_1w$                                 | 29 | $POSset(C_0) \cdot T_0$                                             |
| 11              | $N_0w\cdot N_1t$                                 | 30 | $T_0 \cdot T_{-1}$                                                  |
| 12              | $N_0t\cdot N_1w$                                 | 31 | $end\_word(C_{-1}) \cdot T_{-1} \cdot start\_word(C_0) \cdot T_0$   |
| 13              | $N_0w\cdot N_1w\cdot N_0t$                       | 32 | $end\_word(C_{-1}) \cdot T_{-1} \cdot end\_word(C_0) \cdot T_0$     |
| 14              | $N_0w\cdot N_1w\cdot N_1t$                       | 33 | $start\_word(C_{-1}) \cdot T_{-1} \cdot start\_word(C_0) \cdot T_0$ |
| 15              | $N_1w\cdot N_2w$                                 | 34 | $end_POS(C_{-1}) \cdot T_{-1} \cdot start_POS(C_0) \cdot T_0$       |
| 16              | $N_1w\cdot N_2t$                                 | 35 | $end\_POS(C_{-1}) \cdot T_{-1} \cdot end\_POS(C_0) \cdot T_0$       |
| 17              | $N_1t\cdot N_2w$                                 | 36 | $start\_POS(C_{-1}) \cdot T_{-1} \cdot start\_POS(C_0) \cdot T_0$   |
| 18              | $N_1t\cdot N_2t$                                 | 37 | $end\_word(C_{-1}) \cdot T_0; \ end\_POS(C_{-1}) \cdot T_0$         |
| 19              | $w_1 \cdot N_0 \cdot T_0$ , where $len(C_0) = 1$ | 38 | $T_{-1} \cdot T_0 \cdot start\_word(C_0)$                           |
| 20              | $start\_word(C_0)T_0$                            | 39 | $T_{-1} \cdot T_0 \cdot start\_POS(C_0)$                            |
| $\frac{20}{21}$ | $start_POS(C_0)T_0$                              | 40 | $POSset(C_{-1}) \cdot T_{-1} \cdot POSset(C_0) \cdot T_0$           |
|                 |                                                  |    |                                                                     |

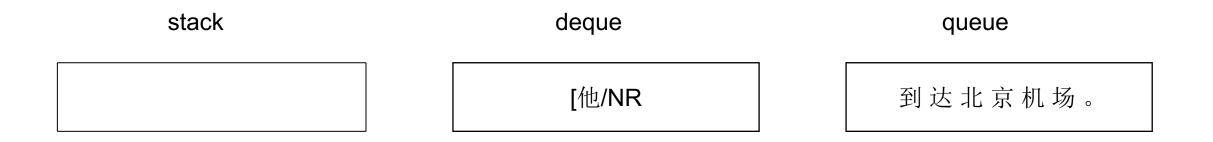
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: initial state



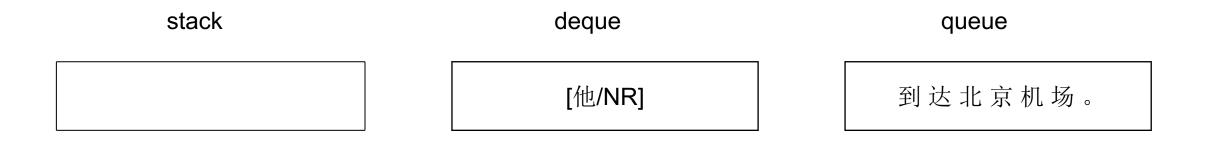
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: SEP(NR)



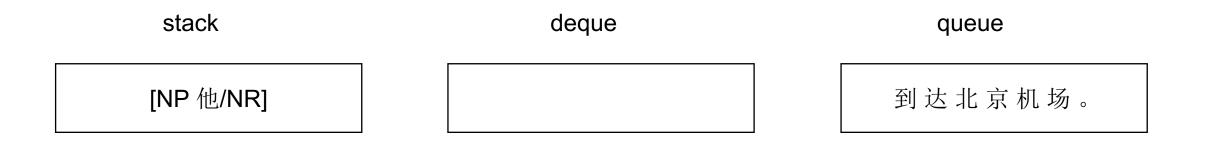
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: FIN W



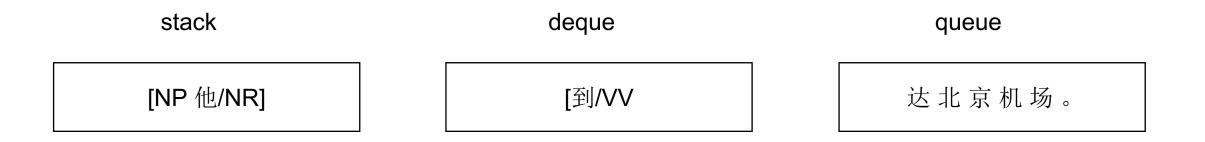
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: SEP(NP)



Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: SEP(VV)



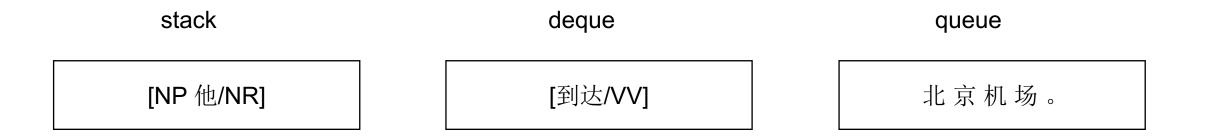
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: APP W



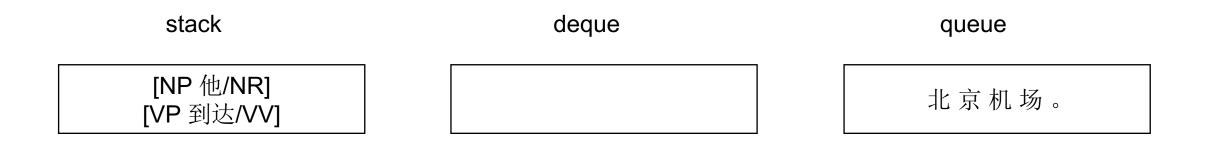
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: FIN W



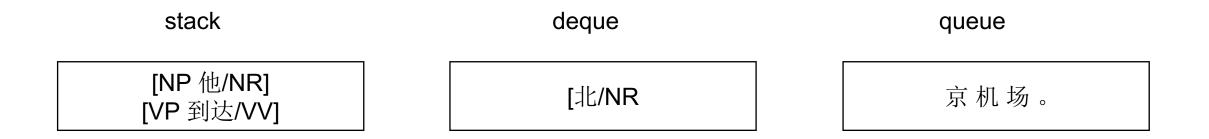
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: SEP(VP)



Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: SEP(NR)



Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: APP W



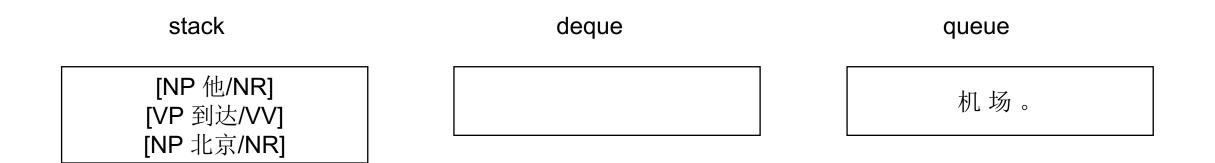
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: FIN W



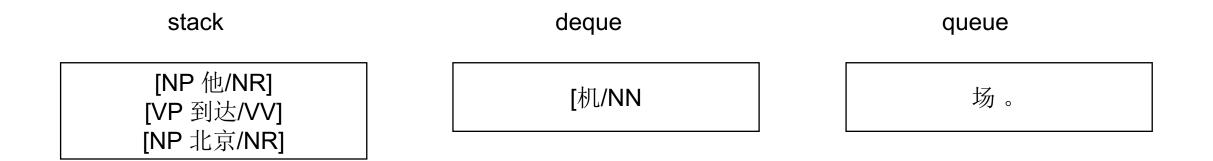
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: SEP(NP)



Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: SEP(NN)



Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: APP W



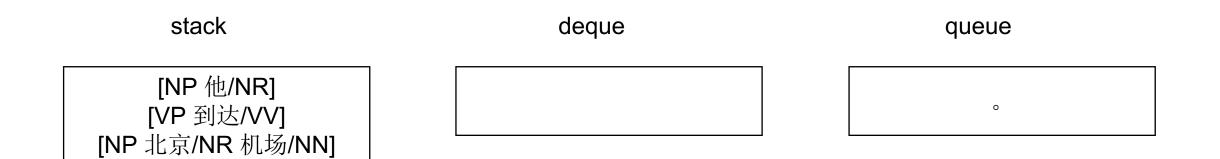
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: FIN W



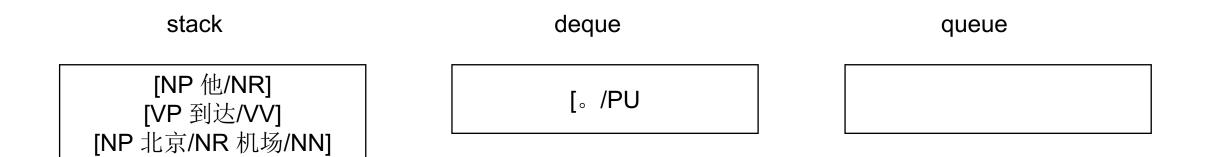
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: APP C



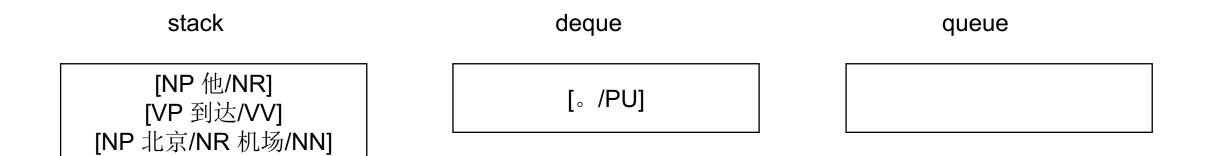
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: SEP(PU)



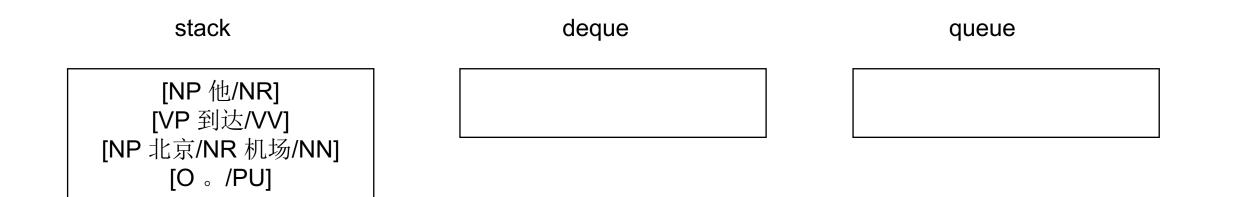
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: FIN W



Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
  - Action: SEP(O)



Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking feature template
  - **Feature Templates** ID  $C_0$  $C_0 \cdot T_0$ 3  $C_0 \cdot POSset(C_0)$  $C_0$ , where  $len(C_0) = 1$ 5  $C_0 \cdot N_0 w$  $C_0 \cdot N_0 w \cdot T_0$ 6  $C_{-1} \cdot C_0$ 8  $T_{-1} \cdot C_0$ 9  $C_{-1} \cdot T_0$  $C_0 \cdot end_word(C_{-1})$ 10 11  $C_{-1} \cdot len(C_0)$  $C_0 \cdot len(C_{-1})$ 12  $C_0 \cdot end_word(C_{-1}) \cdot T0$ 13  $C_{-1} \cdot T_{-1} \cdot C_0 \cdot T_0$ 14 15  $w_{-2} \cdot w_{-1}$

Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

Statistics of the CTB4 corpus

|          | Sections | Sentences | Words   |
|----------|----------|-----------|---------|
| Training | 1-300    | 9,528     | 232,085 |
|          | 326-899  |           |         |
| Dev      | 301-325  | 350       | 6,821   |
| Test     | 900-1078 | 5,290     | 165,862 |

Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

• Results of word-based chunking

| Method                         | CHUNK |
|--------------------------------|-------|
| CRFs                           | 90.74 |
| SVMs                           | 91.46 |
| Chen, Zhang and Isahara (2006) | 91.68 |
| Zhou, Qu and Zhang (2012)      | 92.11 |
| Our Baseline                   | 91.43 |
| Pipeline                       | 69.02 |

Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

• Results of semi-supervised models

|             | SEG   | POS   | CHUNK |
|-------------|-------|-------|-------|
| Supervised  | 89.85 | 81.94 | 70.96 |
| Semi-ALL    | 91.00 | 82.71 | 72.29 |
| Semi-C      | 90.67 | 82.45 | 72.09 |
| Semi- $C_0$ | 90.71 | 82.59 | 71.98 |
| Semi-W      | 90.72 | 82.53 | 71.62 |

Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

#### Joint Segmentation, Tagging & Chunking

• Comparison between the pipeline and joint models

|                 | SEG   | POS   | CHUNK |
|-----------------|-------|-------|-------|
| Pipeline        | 88.81 | 80.64 | 69.02 |
| Pipeline-C      | 88.81 | 80.64 | 68.82 |
| Pipeline-Semi-C | 88.81 | 80.64 | 69.45 |
| Joint           | 89.85 | 81.94 | 70.96 |
| Joint-C         | 89.83 | 81.78 | 70.63 |
| Joint-Semi-C    | 90.67 | 82.45 | 72.09 |

Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Text normalization is introduced as a pre-processing step for microblog processing, which transforms informal words into their standard forms. For example, "tmrw" has been frequently used in tweets for is for "tomorrow".
- This paper proposed a transition-based model for joint word segmentation, POS tagging and text normalization.

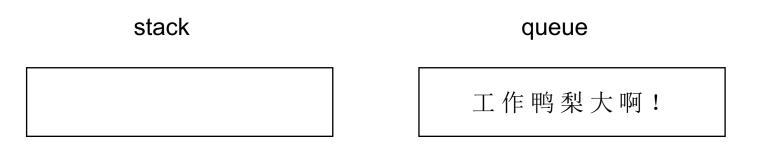
Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. *A Transition-based Model for Joint Segmentation, POS-tagging and Normalization*. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

 Transition actions for joint segmentation, tagging and normalization
 State Action Stack Queue Dictionary

| State     | Action             | Sta                                | ck                         |                 | Queue          | Dictionary                                                                                                |
|-----------|--------------------|------------------------------------|----------------------------|-----------------|----------------|-----------------------------------------------------------------------------------------------------------|
| $S_i$     |                    | Org: 工作                            | 鸭梨<br>pear                 | 大               | 大啊!<br>big ah! | 鸭梨- 压力<br>pear - pressure<br>孩纸- 孩子<br>child paper - child<br>围脖- 微博<br>neckerchief - microblog<br>盆友- 朋友 |
| $S_{i+1}$ | APP("大")           | work<br>Nor: 工作<br>work            | pear b                     | -               | 啊!<br>(ah!)    |                                                                                                           |
|           | SEP("大")           | Org: 工作<br>work<br>Nor: 工作<br>work | 鸭梨<br>pear                 | 大<br>big        |                | basin friend - friend                                                                                     |
|           | SEPS("大",<br>"压力") | Org: 工作<br>work<br>Nor: 工作<br>work | 鸭梨<br>pear<br>压力<br>pressu | 大<br>big<br>Ire |                |                                                                                                           |

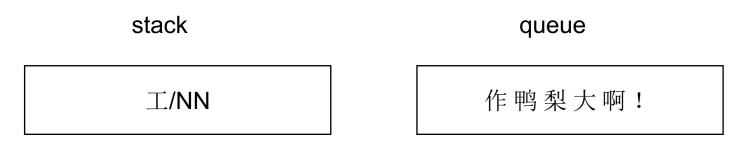
Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A *Transition-based Model for Joint Segmentation, POS-tagging and Normalization*. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

- Transition actions for joint segmentation, tagging and normalization
  - Actions: initial state



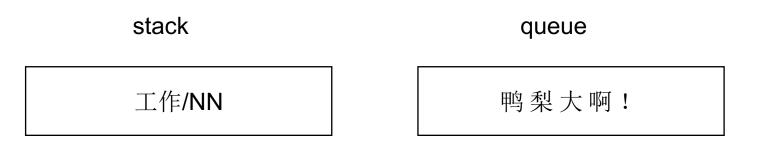
Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A *Transition-based Model for Joint Segmentation, POS-tagging and Normalization*. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

- Transition actions for joint segmentation, tagging and normalization
  - Actions: SEP( $\pm$ , NN)



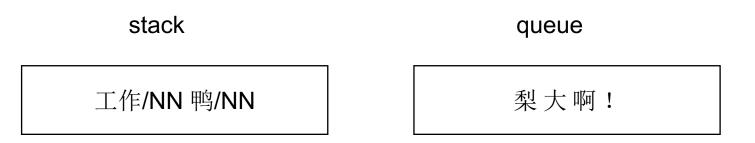
Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A *Transition-based Model for Joint Segmentation, POS-tagging and Normalization*. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

- Transition actions for joint segmentation, tagging and normalization
  - Actions: APP(作)



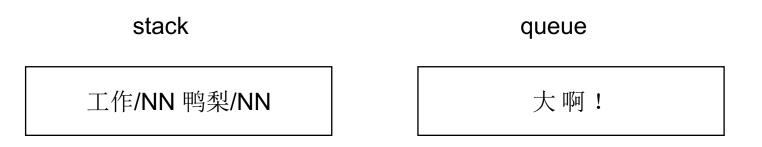
Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A *Transition-based Model for Joint Segmentation, POS-tagging and Normalization*. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

- Transition actions for joint segmentation, tagging and normalization
  - Actions: SEP(鸭, NN)



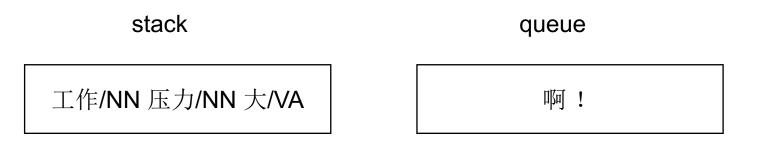
Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A *Transition-based Model for Joint Segmentation, POS-tagging and Normalization*. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

- Transition actions for joint segmentation, tagging and normalization
  - Actions: APP(梨)



Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A *Transition-based Model for Joint Segmentation, POS-tagging and Normalization*. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

- Transition actions for joint segmentation, tagging and normalization
  - Actions: SEPS(大, VA, 压力)



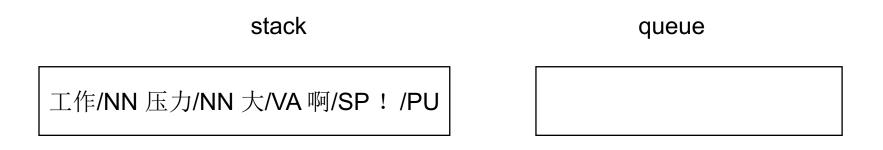
Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A *Transition-based Model for Joint Segmentation, POS-tagging and Normalization*. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

- Transition actions for joint segmentation, tagging and normalization
  - Actions: SEP(啊, SP)



Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A *Transition-based Model for Joint Segmentation, POS-tagging and Normalization*. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

- Transition actions for joint segmentation, tagging and normalization
  - Actions: SEP(!, PU)



Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A *Transition-based Model for Joint Segmentation, POS-tagging and Normalization*. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

- Features
  - The segmentation feature templates of Zhang and Clark (2011)
  - Extracting language model features by using word-based language model learned from a large quantity of standard texts

Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A *Transition-based Model for Joint Segmentation, POS-tagging and Normalization*. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

- Normalization dictionary
- Using CTB data.

Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A *Transition-based Model for Joint Segmentation, POS-tagging and Normalization*. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

#### Results

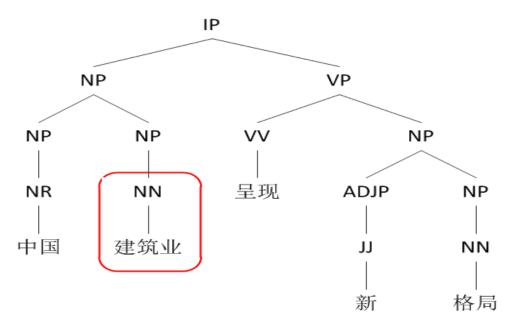
|          | Seg-F  | POS-F  | Nor-F  |
|----------|--------|--------|--------|
| Stanford | 0.9058 | 0.8163 |        |
| ST       | 0.8934 | 0.8263 |        |
| S;N;T    | 0.8885 | 0.8197 | 0.4058 |
| SN;T     | 0.8945 | 0.8287 | 0.4207 |
| SNT      | 0.8995 | 0.8296 | 0.4391 |
| ST+lm    | 0.9162 | 0.8401 |        |
| S;N;T+lm | 0.9132 | 0.8341 | 0.6276 |
| SN;T+lm  | 0.9240 | 0.8439 | 0.6392 |
| SNT+lm   | 0.9261 | 0.8459 | 0.6413 |

Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A *Transition-based Model for Joint Segmentation, POS-tagging and Normalization*. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

• This paper investigate Chinese parsing from the character-level, extending the notion of phrase-structure trees by annotating internal structures of words.

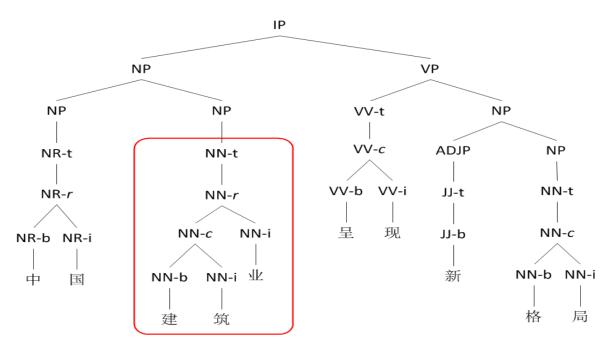
Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

Traditional: word-based Chinese parsing



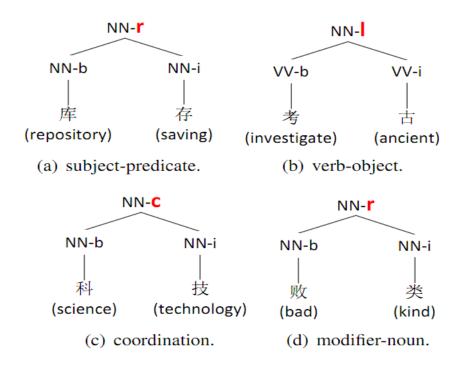
CTB-style word-based syntax tree for "中国 (China) 建筑业 (architecture industry) 呈现 (show) 新 (new) 格局 (pattern)".

• This: character-based Chinese parsing

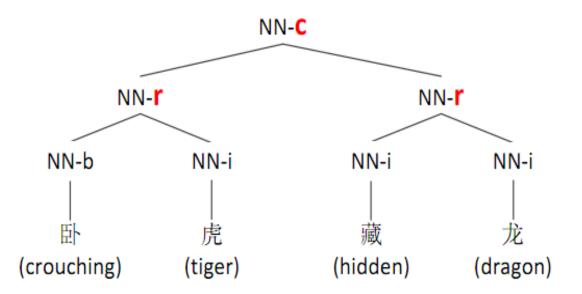


Character-level syntax tree with hierarchal word structures for "中 (middle) 国 (nation) 建 (construction) <u>筑 (</u>building) 业 (industry) 呈 (present) 现 (show) 新 (new) 格 (style) 局 (situation)".

- Why character-based?
  - · Chinese words have syntactic structures.

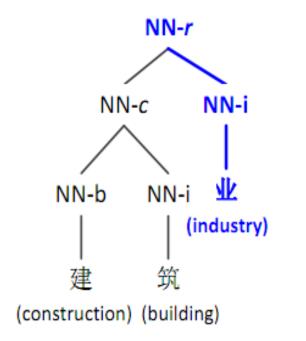


- Why character-based?
  - Chinese words have syntactic structures.



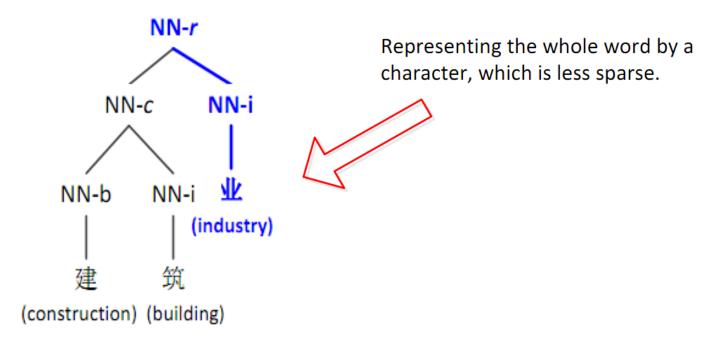
Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters.* In proceedings of ACL 2013. Sophia, Bulgaria. August.

- Why character-based?
  - Deep character information of word structures.



Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

- Why character-based?
  - Deep character information of word structures.

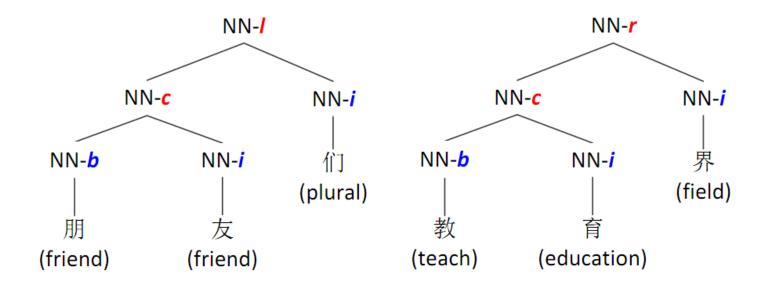


Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

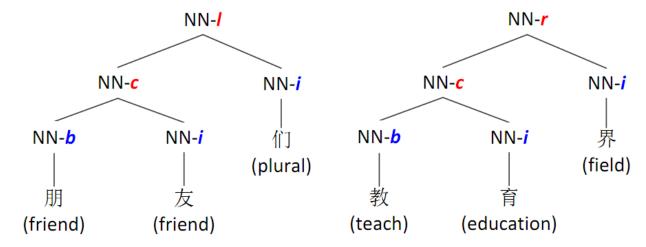
- Why character-based?
  - Build syntax tree from character sequences.
    - Not require segmentation or POS-tagging as input.
    - Benefit from joint framework, avoid error propagation.

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

- Word structure annotation
  - Binarized tree structure for each word.



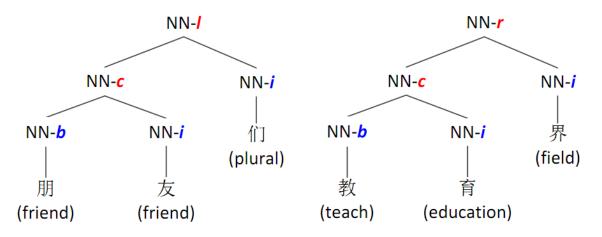
- Word structure annotation
  - Binarized tree structure for each word.



- **b**, i denote whether the below character is at a word's beginning position.
- l, r, c denote the head direction of current node, respectively left, right and coordination.

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

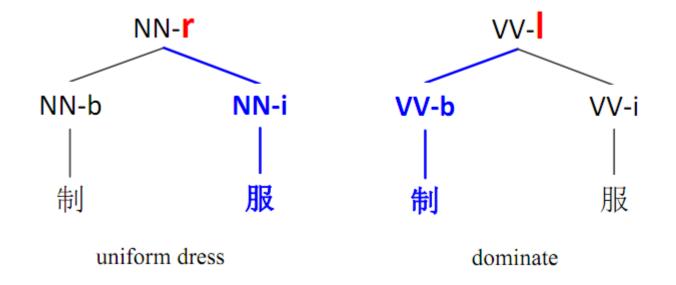
- Word structure annotation
  - Binarized tree structure for each word.



- **b**, i denote whether the below character is at a word's beginning position.
- I, r, c denote the head direction of current node, respectively left, right and coordination.
   We extend word-based phrase-structures into character-based

syntax trees using the word structures demonstrated above.

- Word structure annotation
  - Annotation input: a word and its POS.
    - A word may have different structures according to different POS.



Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters.* In proceedings of ACL 2013. Sophia, Bulgaria. August.

- The character-based parsing model
  - A transition-based parser

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

- The character-based parsing model
  - A transition-based parser
    - Extended from Zhang and Clark (2009), a word-based transition parser.

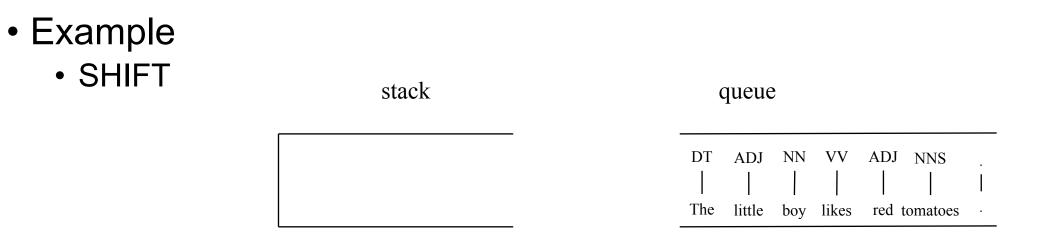
Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters.* In proceedings of ACL 2013. Sophia, Bulgaria. August.

- The character-based parsing model
  - A transition-based parser
    - Extended from Zhang and Clark (2009), a word-based transition parser.
  - Incorporating features of a word-based parser as well as a joint SEG&POS system.

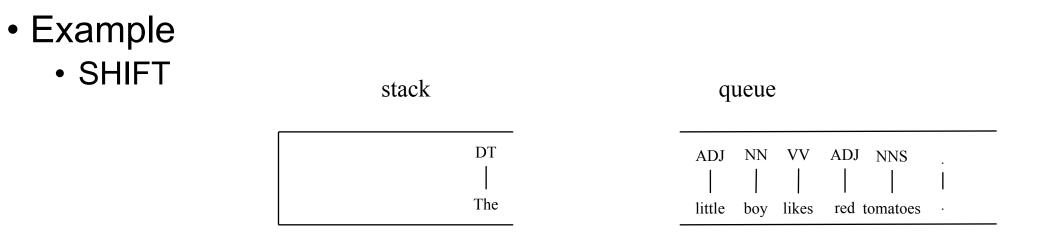
Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

- The character-based parsing model
  - A transition-based parser
    - Extended from Zhang and Clark (2009), a word-based transition parser.
  - Incorporating features of a word-based parser as well as a joint SEG&POS system.
  - Adding the deep character information from word structures.

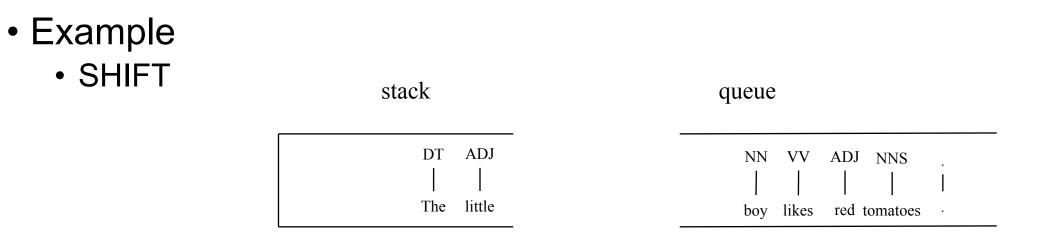
Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.



Yue Zhang and Stephen Clark. 2011. *Syntactic Processing Using the Generalized Perceptron and Beam Search*. In *Computational Linguistics*, 37(1), March.

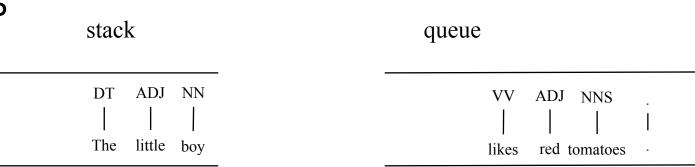


Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



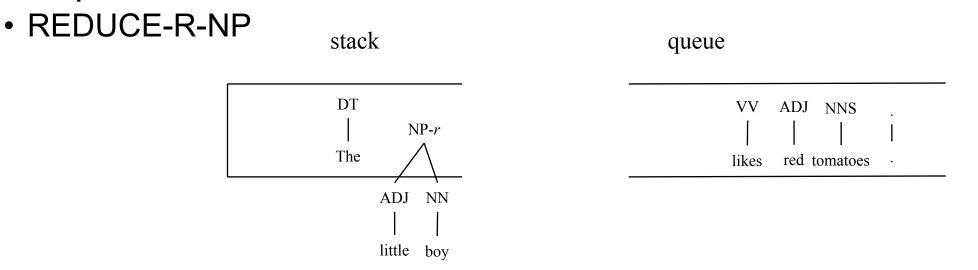
Yue Zhang and Stephen Clark. 2011. *Syntactic Processing Using the Generalized Perceptron and Beam Search*. In *Computational Linguistics*, 37(1), March.

- Example
  - REDUCE-R-NP

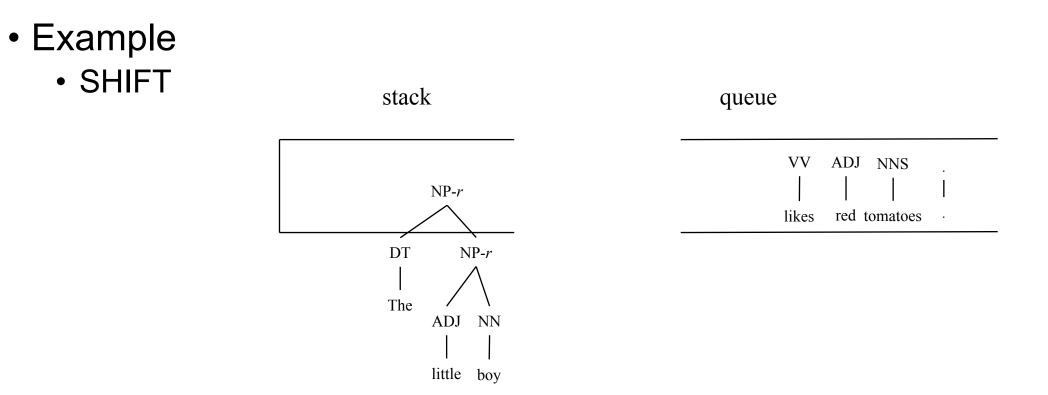


Yue Zhang and Stephen Clark. 2011. *Syntactic Processing Using the Generalized Perceptron and Beam Search*. In *Computational Linguistics*, 37(1), March.

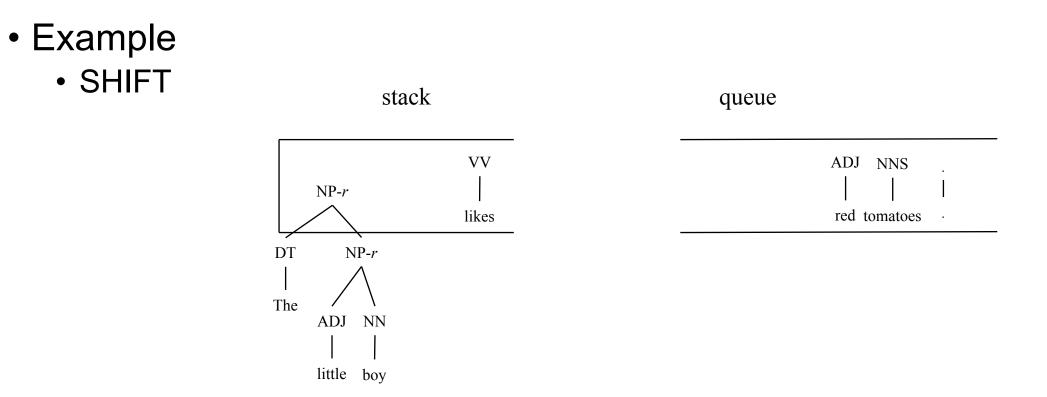
• Example



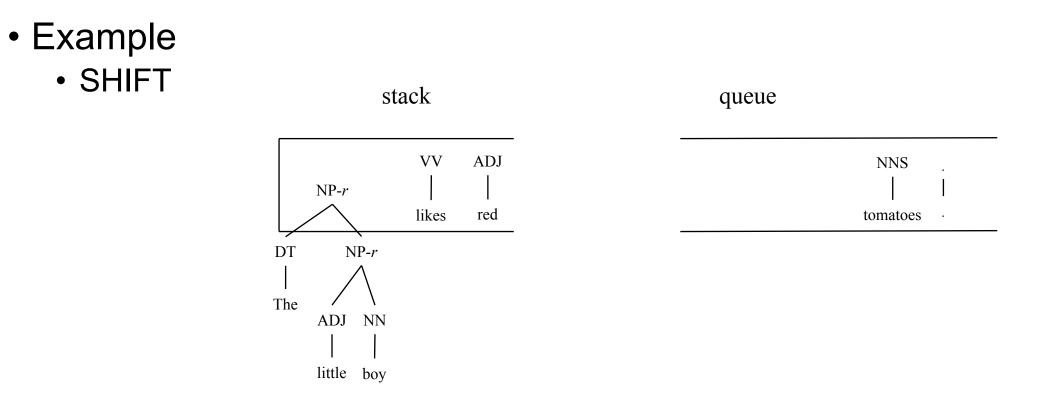
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

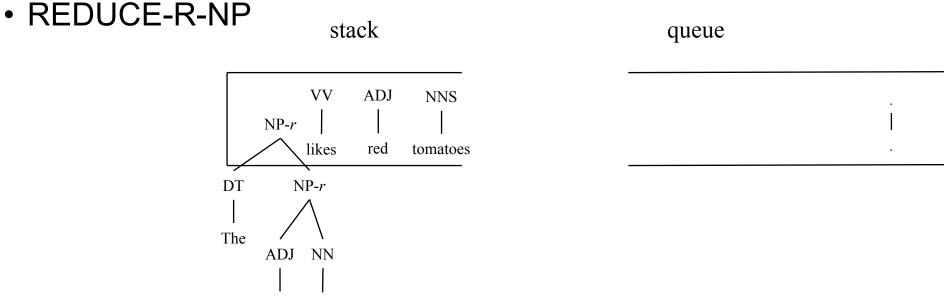


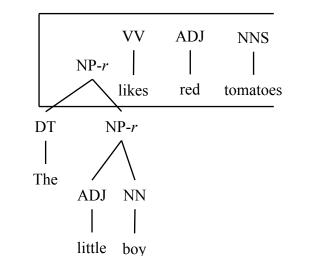
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



Yue Zhang and Stephen Clark. 2011. *Syntactic Processing Using the Generalized Perceptron and Beam Search*. In *Computational Linguistics*, 37(1), March.

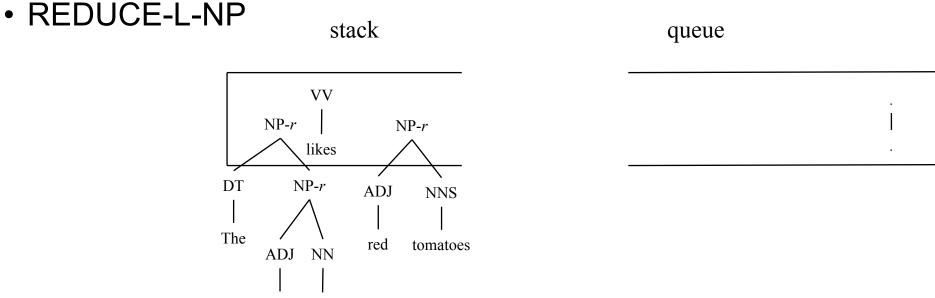
• Example





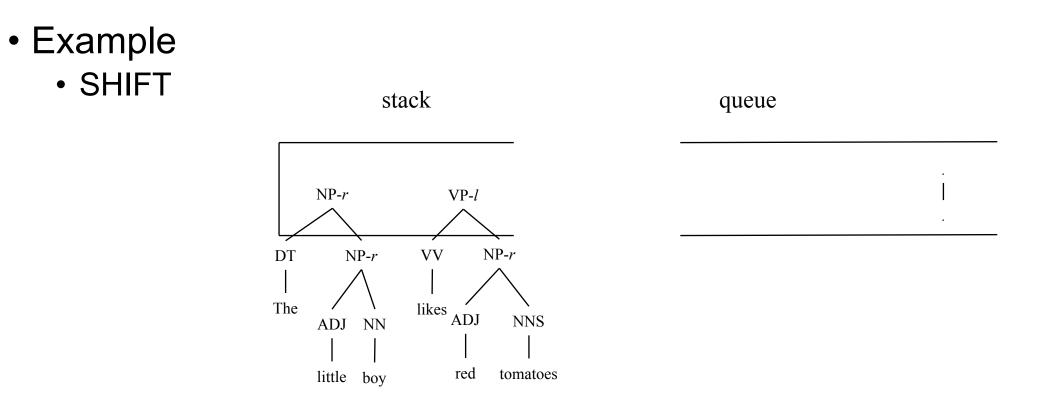
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

• Example



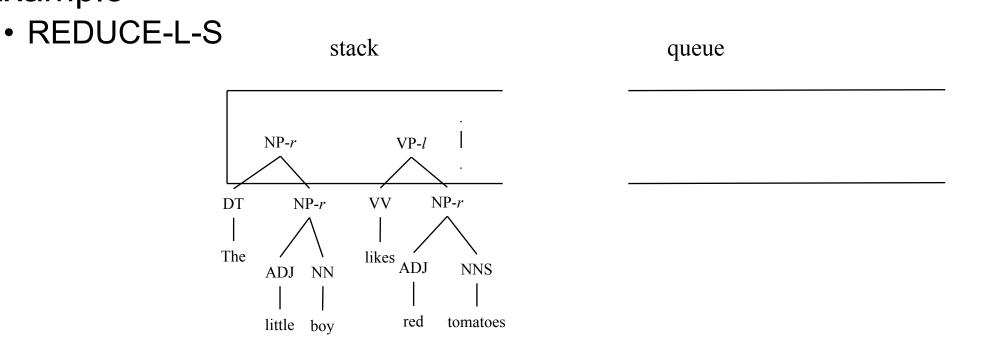
little boy

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



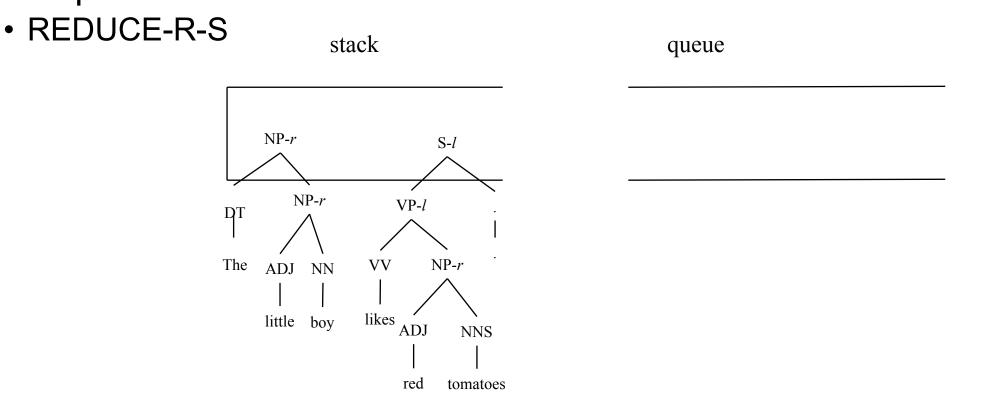
Yue Zhang and Stephen Clark. 2011. *Syntactic Processing Using the Generalized Perceptron and Beam Search*. In *Computational Linguistics*, 37(1), March.

• Example



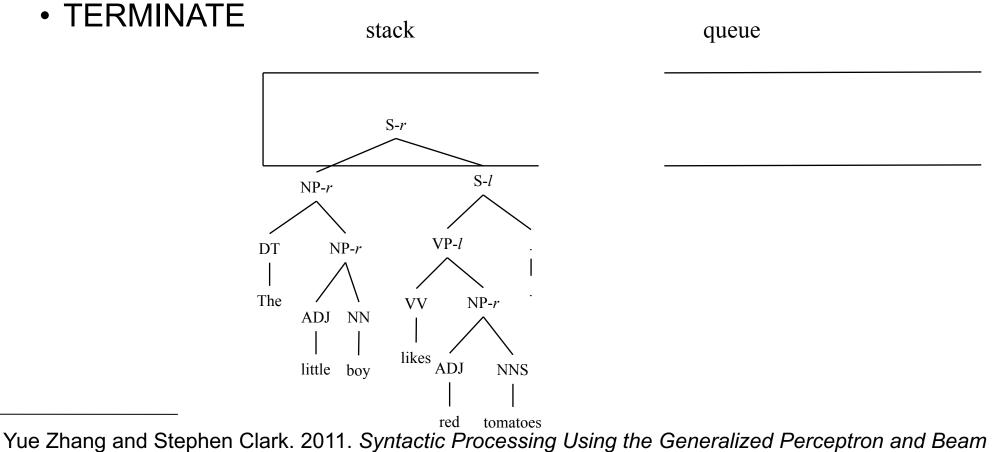
Yue Zhang and Stephen Clark. 2011. *Syntactic Processing Using the Generalized Perceptron and Beam Search*. In *Computational Linguistics*, 37(1), March.

• Example



Yue Zhang and Stephen Clark. 2011. *Syntactic Processing Using the Generalized Perceptron and Beam Search*. In *Computational Linguistics*, 37(1), March.

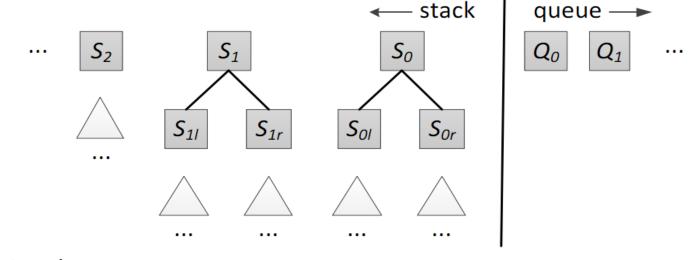
• Example



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Search. In Computational Linguistics, 37(1), March.

• The transition system

State:

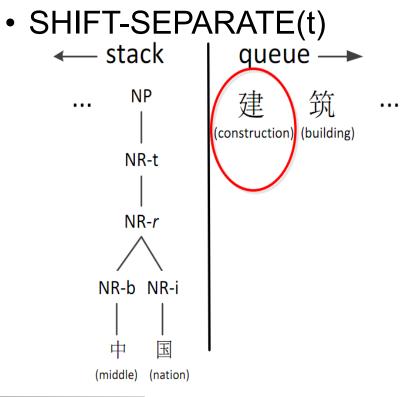


#### Actions:

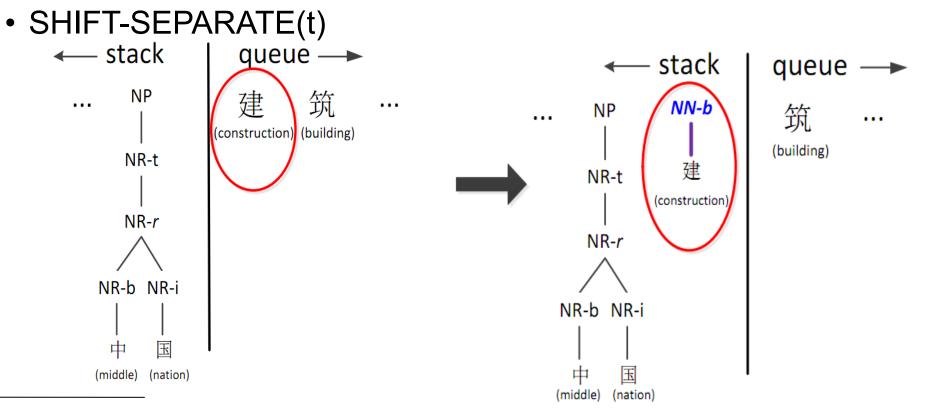
•SHIFT-SEPARATE(*t*), SHIFT-APPEND, REDUCE-SUBWORD(*d*), REDUCE-WORD, REDUCE-BINARY(*d*;*l*), REDUCE-UNARY(*l*), TERMINATE

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

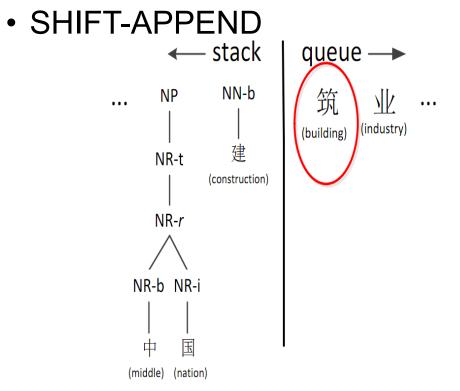
Actions



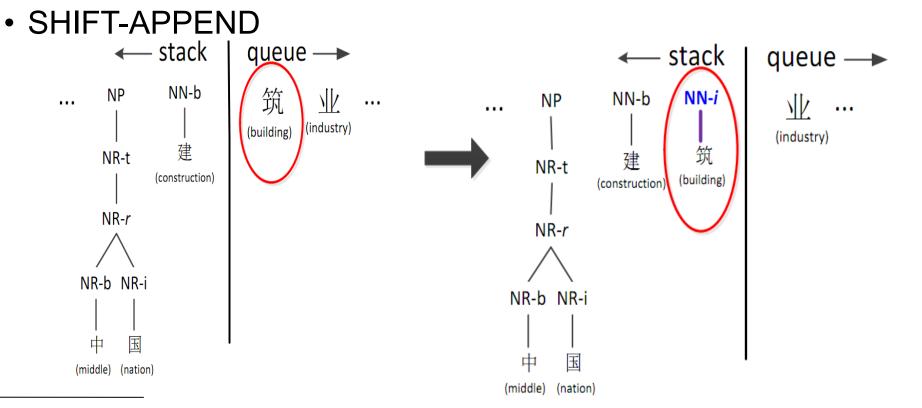
Actions



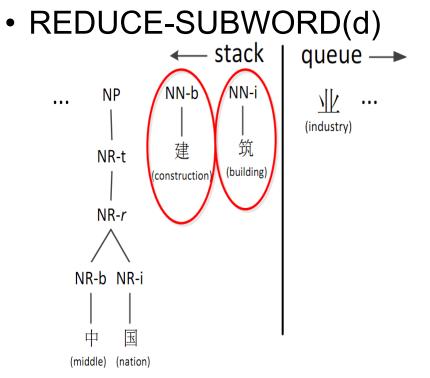
Actions



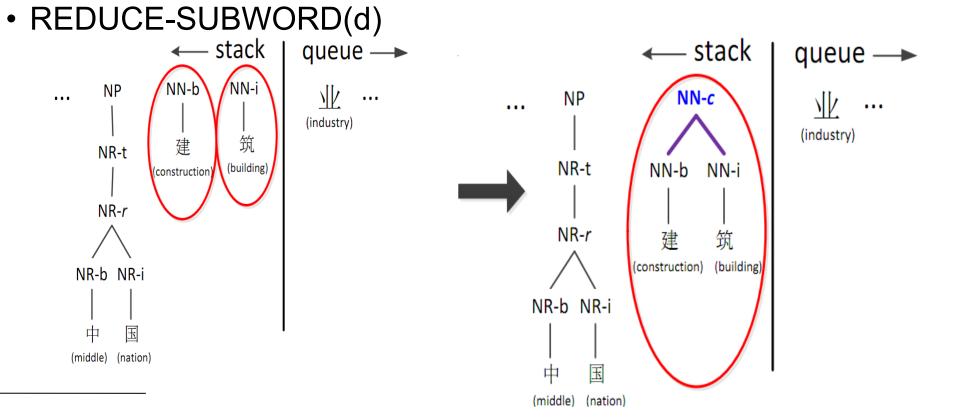
Actions



Actions



Actions

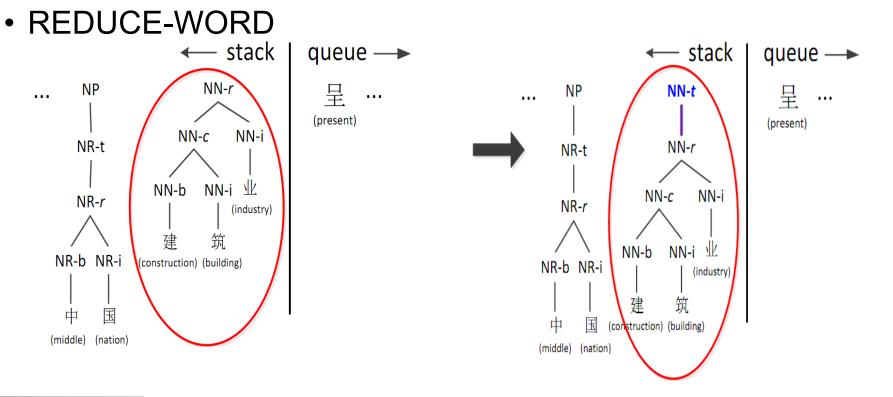


Actions

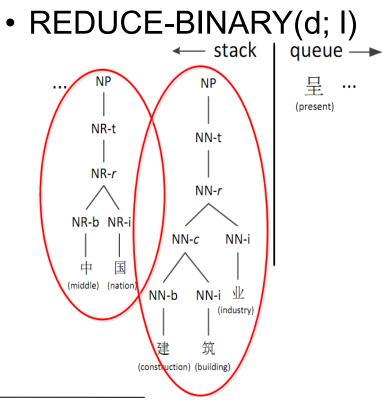


Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

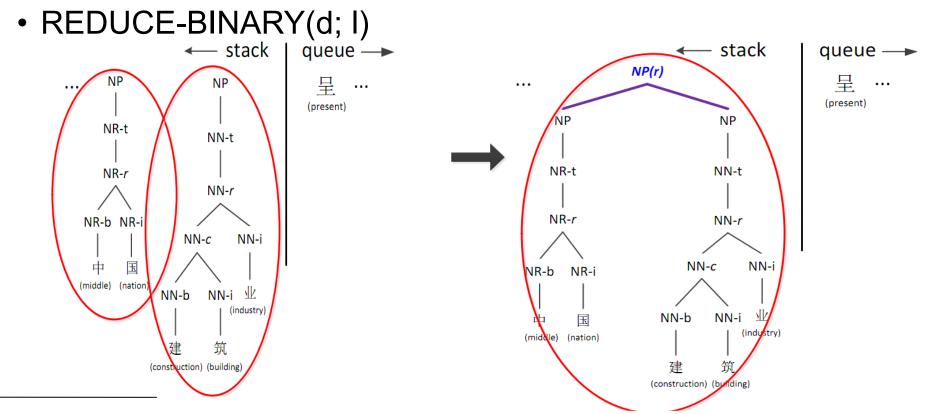
Actions



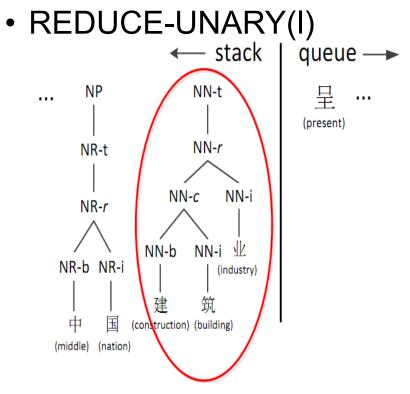
Actions



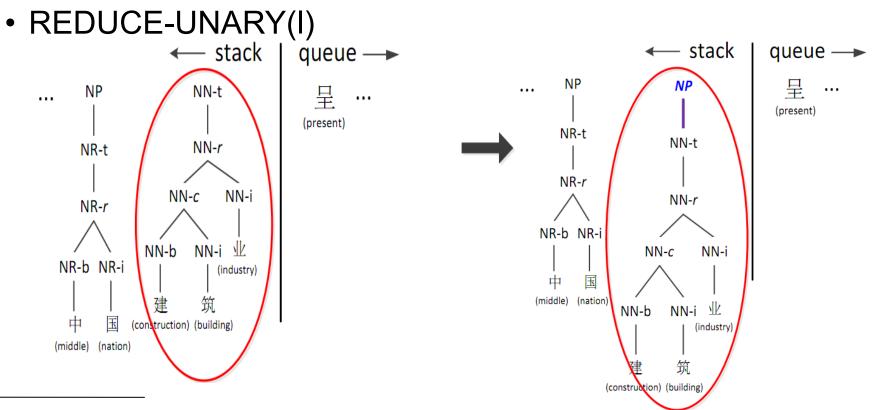
Actions



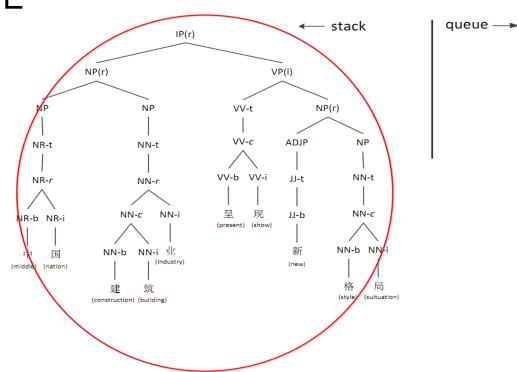
Actions



Actions



- Actions
  - TERMINATE



• Features

 From word-based parser (Zhang and Clark, 2009)

From joint SEG&POS-Tagging (Zhang and Clark, 2010)

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

• Features

 From word-based parser (Zhang and Clark, 2009)

From joint SEG&POS-Tagging (Zhang and Clark, 2010)

baseline features

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

• Features

From word-based parser (Zhang and Clark, 2009)

From joint SEG&POS-Tagging (Zhang and Clark, 2010)

baseline features

Deep character features

• Features

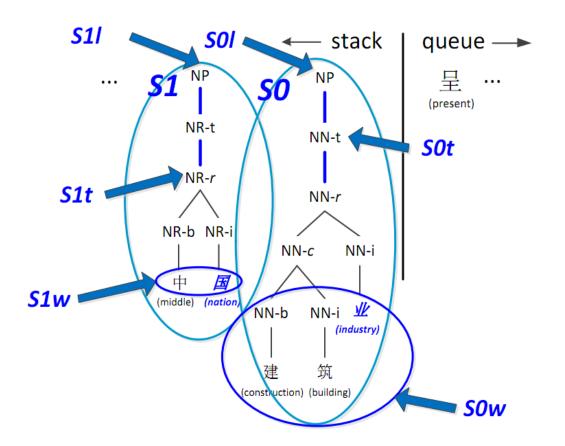
From word-based parser (Zhang and Clark, 2009)

From joint SEG&POS-Tagging (Zhang and Clark, 2010)

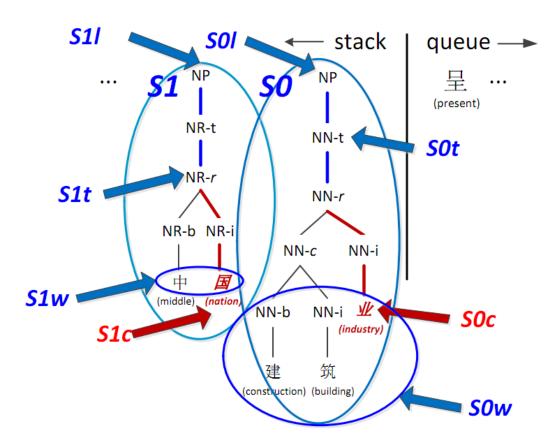
baseline features

Deep character features new features

• Features



• Features



#### • Experiments

• Penn Chinese Treebank 5 (CTB-5)

|          | CTB files | # sent. | # words |
|----------|-----------|---------|---------|
| Training | 1-270     | 18089   | 493,939 |
|          | 400-1151  |         |         |
| Develop  | 301-325   | 350     | 6,821   |
| Test     | 271-300   | 348     | 8,008   |

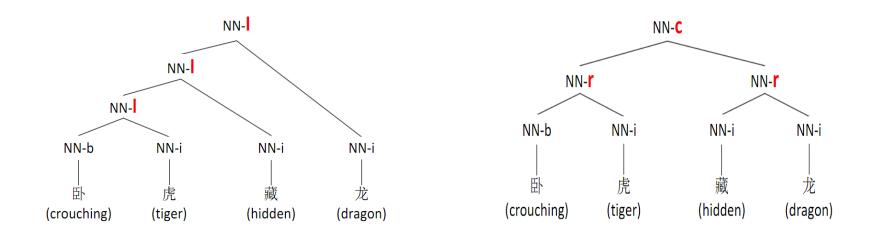
Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

- Experiments
  - Baseline models
    - Pipeline model including:
      - Joint SEG&POS-Tagging model (Zhang and Clark, 2010).
      - Word-based CFG parsing model (Zhang and Clark, 2009).

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

#### • Experiments

- Our proposed models
  - · Joint model with flat word structures
  - Joint model with annotated word structures



Results

|                    | Task  | Р     | R     | F     |
|--------------------|-------|-------|-------|-------|
| Pipeline           | Seg   | 97.35 | 98.02 | 97.69 |
|                    | Tag   | 93.51 | 94.15 | 93.83 |
|                    | Parse | 81.58 | 82.95 | 82.26 |
| Flat word          | Seg   | 97.32 | 98.13 | 97.73 |
| structures         | Tag   | 94.09 | 94.88 | 94.48 |
|                    | Parse | 83.39 | 83.84 | 83.61 |
| Annotated          | Seg   | 97.49 | 98.18 | 97.84 |
| word<br>structures | Tag   | 94.46 | 95.14 | 94.80 |
|                    | Parse | 84.42 | 84.43 | 84.43 |
|                    | WS    | 94.02 | 94.69 | 94.35 |

#### Compare with <u>other systems</u>

| Task                 | Seg   | Tag   | Parse |
|----------------------|-------|-------|-------|
| Kruengkrai+ '09      | 97.87 | 93.67 | _     |
| Sun '11              | 98.17 | 94.02 | -     |
| Wang+ '11            | 98.11 | 94.18 | -     |
| Li '11               | 97.3  | 93.5  | 79.7  |
| Li+ '12              | 97.50 | 93.31 | -     |
| Hatori+ '12          | 98.26 | 94.64 | -     |
| Qian+ '12            | 97.96 | 93.81 | 82.85 |
| Ours pipeline        | 97.69 | 93.83 | 82.26 |
| Ours joint flat      | 97.73 | 94.48 | 83.61 |
| Ours joint annotated | 97.84 | 94.80 | 84.43 |

#### Joint Segmentation, POS-tagging and Dependency Parsing

 This paper investigate the problem of character-level Chinese dependency parsing, building dependency trees over characters.

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June.

#### Joint Segmentation, POS-tagging and Dependency Parsing

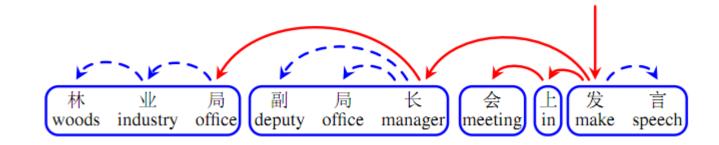
- Traditional word-based dependency parsing
  - Inter-word dependencies



Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June.

#### Joint Segmentation, POS-tagging and Dependency Parsing

- Character-level dependency parsing
  - Inter- and intra-word dependencies

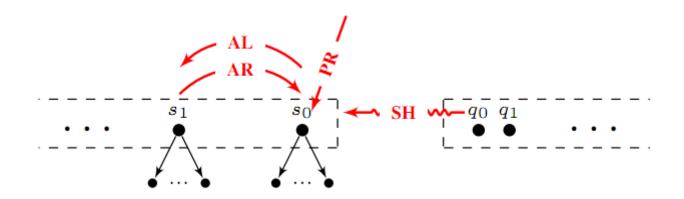


Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June.

- Main method
  - An overview
    - Transition-based framework with global learning and beam search (Zhang and Clark, 2011)
    - Extensions from word-level transition-based dependency parsing models
      - Arc-standard (Nirve 2008; Huang et al., 2009)
      - Arc-eager (Nirve 2008; Zhang and Clark, 2008)

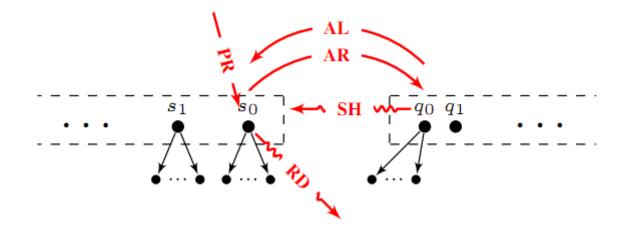
Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June.

- Main method
  - Word-level transition-based dependency parsing
    - Arc-standard



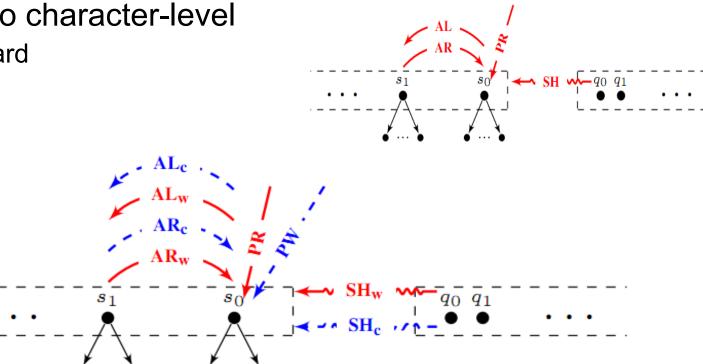
Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June.

- Main method
  - Word-level transition-based dependency parsing
    - Arc-eager



Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June.

- Main method
  - Word-level to character-level
    - Arc-standard

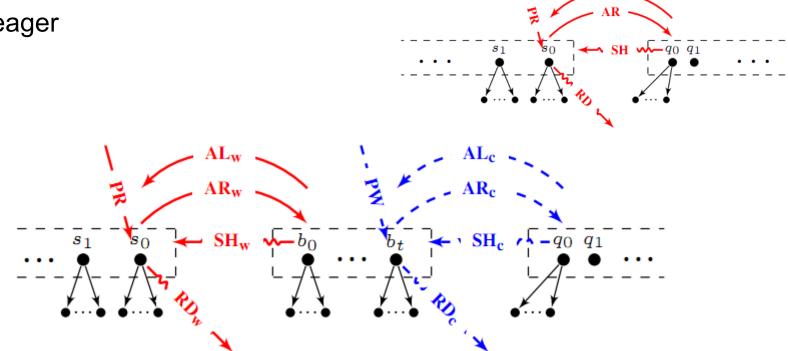


Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Character-Level Chinese Dependency Parsing. In Proceedings of ACL 2014. Baltimore, USA, June.

- Main method
  - Word-level to character-level
    - Arc-standard

| step | action                                | stack         | queue  | dependencies                                       |
|------|---------------------------------------|---------------|--------|----------------------------------------------------|
| 0    | -                                     | $\phi$        | 林业···· | $\phi$                                             |
| 1    | $SH_w(NR)$                            | 林/NR          | 业局…    | $\phi$                                             |
| 2    | SH <sub>c</sub>                       | 林/NR 业/NR     | 局 副    | $\phi$                                             |
| 3    | $AL_c$                                | 业/NR          | 局 副    | $A_1 = \{ \bigstar^{\frown} \Psi \}$               |
| 4    | $SH_{c}$                              | 业/NR 局/NR     | 副 局    | $A_1$                                              |
| 5    | $AL_c$                                | 局/NR          | 副 局    | $A_2 = A_1 \bigcup \{ \mathscr{W}^{} \boxminus \}$ |
| 6    | $\mathbf{PW}$                         | 林业局/NR        | 副 局    | $A_2$                                              |
| 7    | $\mathrm{SH}_\mathrm{w}(\mathrm{NN})$ | 林业局/NR 副/NN   | 局长…    | $A_2$                                              |
|      |                                       | • • •         | • • •  | ••••                                               |
| 12   | $\mathbf{PW}$                         | 林业局/NR 副局长/NN | 会上…    | $A_i$                                              |
| 13   | $AL_w$                                | 副局长/NN        | 会上 …   | $A_{i+1} = A_i \bigcup \{ 林业局/NR^{} 副局长/NN \}$     |
| •••  | •••                                   | •••           | •••    |                                                    |

- Main method
  - Word-level to character-level
    - Arc-eager



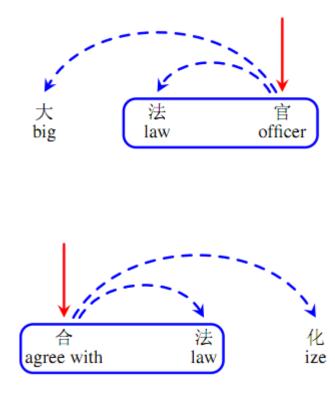
- Main method
  - Word-level to character-level
    - Arc-eager

|      | 5                          |        |        |        |                                                         |
|------|----------------------------|--------|--------|--------|---------------------------------------------------------|
| step | action                     | stack  | deque  | queue  | dependencies                                            |
| 0    | -                          | $\phi$ |        | 林 业 …  |                                                         |
| 1    | $SH_c(NR)$                 | $\phi$ | 林/NR   | 业 局    | $\phi$                                                  |
| 2    | $AL_{c}$                   | $\phi$ | $\phi$ | 业/NR 局 | $A_1 = \{ \bigstar^{\frown} \Psi \}$                    |
| 3    | SHc                        | $\phi$ | 业/NR   | 局 副    | $A_1$                                                   |
| 4    | $AL_{c}$                   | $\phi$ | $\phi$ | 局/NR 副 | $A_2 = A_1 \bigcup \{ \mathbb{W}^{}   \mathbb{B} \}$    |
| 5    | $SH_{c}$                   | $\phi$ | 局/NR   | 副 局    | $A_2$                                                   |
| 6    | PW                         | $\phi$ | 林业局/NR | 副 局    | $A_2$                                                   |
| 7    | $\mathrm{SH}_{\mathrm{w}}$ | 林业局/NR | $\phi$ | 副 局    | $A_2$                                                   |
| •••  |                            |        | •••    |        | •••                                                     |
| 13   | PW                         | 林业局/NR | 副局长/NN | 会上     | $A_i$                                                   |
| 14   | $AL_w$                     | $\phi$ | 副局长/NN | 会上     | $A_{i+1} = A_i \bigcup \{ 林 \# 周 / NR^{} 副 ଗ 长 / NN \}$ |
| •••  | •••                        | •••    | •••    | • • •  | •••                                                     |

- Main method
  - New features

#### **Feature templates**

 $\begin{array}{c} L\underline{c}, \ L\underline{c}\underline{t}, \ R\underline{c}, \ R\underline{c}\underline{t}, \ L_{lc1}\underline{c}, \ L_{rc1}\underline{c}, \ R_{lc1}\underline{c}, \\ L\underline{c} \cdot R\underline{c}, \ L_{lc1}\underline{c}\underline{t}, \ L_{rc1}\underline{c}\underline{t}, \ R_{lc1}\underline{c}\underline{t}, \\ L\underline{c} \cdot R\underline{w}, \ L\underline{w} \cdot R\underline{c}, \ L\underline{c}\underline{t} \cdot R\underline{w}, \\ L\underline{w}\underline{t} \cdot R\underline{c}, \ L\underline{w} \cdot R\underline{c}\underline{t}, \ L\underline{c} \cdot R\underline{w}\underline{t}, \\ L\underline{c} \cdot R\underline{c} \cdot L_{lc1}\underline{c}, \ L\underline{c} \cdot R\underline{c} \cdot L_{rc1}\underline{c}, \\ L\underline{c} \cdot R\underline{c} \cdot L_{lc1}\underline{c}, \ L\underline{c} \cdot R\underline{c} \cdot L_{rc1}\underline{c}, \\ L\underline{c} \cdot R\underline{c} \cdot L_{lc2}\underline{c}, \ L\underline{c} \cdot R\underline{c} \cdot L_{rc2}\underline{c}, \\ L\underline{c} \cdot R\underline{c} \cdot R_{lc1}\underline{c}, \ L\underline{c} \cdot R\underline{c} \cdot R_{lc2}\underline{c}, \\ L\underline{c} \cdot R\underline{c} \cdot R_{lc1}\underline{c}, \ L\underline{c} \cdot R\underline{c} \cdot R_{lc2}\underline{c}, \\ L\underline{lsw}, \ L\underline{rsw}, \ R\underline{lsw}, \ R\underline{rsw}, \ R\underline{rsw}, \ L\underline{lsw}\underline{t}, \\ L\underline{rsw} \cdot R\underline{w}, \ L\underline{w} \cdot R\underline{lsw}, \ L\underline{w} \cdot R\underline{w}, \\ L\underline{rsw} \cdot R\underline{w}, \ L\underline{w} \cdot R\underline{lsw}, \ L\underline{w} \cdot R\underline{rsw} \end{array}$ 



- Experiments
  - Data
    - CTB5.0, CTB6.0, CTB7.0

|             |       | CTB50 | CTB60 | CTB70 |
|-------------|-------|-------|-------|-------|
| Training    | #sent | 18k   | 23k   | 31k   |
| Training    | #word | 494k  | 641k  | 718k  |
|             | #sent | 350   | 2.1k  | 10k   |
| Development | #word | 6.8k  | 60k   | 237k  |
|             | #oov  | 553   | 3.3k  | 13k   |
|             | #sent | 348   | 2.8k  | 10k   |
| Test        | #word | 8.0k  | 82k   | 245k  |
|             | #oov  | 278   | 4.6k  | 13k   |

- Experiments
  - Proposed models
    - STD (real, pseudo)
      - Joint segmentation and POS-tagging with inner dependencies
    - STD (pseudo, real)
      - Joint segmentation, POS-tagging and dependency parsing
    - STD (real, real)
      - Joint segmentation, POS-tagging and dependency parsing with inner dependencies
    - EAG (real, pseudo)
      - Joint segmentation and POS-tagging with inner dependencies
    - EAG (pseudo, real)
      - Joint segmentation, POS-tagging and dependency parsing
    - EAG (real, real)

Joint segmentation, POS-tagging and dependency parsing with inner dependencies

- Experiments
  - Final results

| Model                   | CTB50 |                           |                           | CTB60         |                           |                           | CTB70                     |       |                           |                           |                           |              |
|-------------------------|-------|---------------------------|---------------------------|---------------|---------------------------|---------------------------|---------------------------|-------|---------------------------|---------------------------|---------------------------|--------------|
|                         | SEG   | POS                       | DEP                       | WS            | SEG                       | POS                       | DEP                       | WS    | SEG                       | POS                       | DEP                       | WS           |
| The arc-standard models |       |                           |                           |               |                           |                           |                           |       |                           |                           |                           |              |
| STD (pipe)              | 97.53 | 93.28                     | 79.72                     | _             | 95.32                     | 90.65                     | 75.35                     | _     | 95.23                     | 89.92                     | 73.93                     | _            |
| STD (real, pseudo)      | 97.78 | 93.74                     | _                         | <b>97.4</b> 0 | <b>95.77</b> <sup>‡</sup> | 91.24 <sup>‡</sup>        | _                         | 95.08 | <b>95.59</b> <sup>‡</sup> | 90.49 <sup>‡</sup>        | _                         | <b>94.97</b> |
| STD (pseudo, real)      | 97.67 | 94.28 <sup>‡</sup>        | 81.63 <sup>‡</sup>        | _             | 95.63 <sup>‡</sup>        | <b>91.40</b> <sup>‡</sup> | 76.75 <sup>‡</sup>        | _     | 95.53 <sup>‡</sup>        | 90.75 <sup>‡</sup>        | 75.63 <sup>‡</sup>        | _            |
| STD (real, real)        | 97.84 | <b>94.62</b> <sup>‡</sup> | <b>82.14</b> <sup>‡</sup> | 97.30         | 95.56 <sup>‡</sup>        | 91.39 <sup>‡</sup>        | <b>77.09</b> <sup>‡</sup> | 94.80 | 95.51 <sup>‡</sup>        | <b>90.76</b> ‡            | 75.70 <sup>‡</sup>        | 94.78        |
| Hatori+'12              | 97.75 | 94.33                     | 81.56                     | _             | 95.26                     | 91.06                     | 75.93                     | _     | 95.27                     | 90.53                     | 74.73                     | _            |
| The arc-eager models    |       |                           |                           |               |                           |                           |                           |       |                           |                           |                           |              |
| EAG (pipe)              | 97.53 | 93.28                     | 79.59                     | -             | 95.32                     | 90.65                     | 74.98                     | _     | 95.23                     | 89.92                     | 73.46                     | _            |
| EAG (real, pseudo)      | 97.75 | 93.88                     | _                         | 97.45         | 95.63 <sup>‡</sup>        | 91.07 <sup>‡</sup>        | _                         | 95.06 | <b>95.50</b> <sup>‡</sup> | 90.36 <sup>‡</sup>        | _                         | 95.00        |
| EAG (pseudo, real)      | 97.76 | <b>94.36</b> ‡            | <b>81.70<sup>‡</sup></b>  | _             | 95.63 <sup>‡</sup>        | 91.34 <sup>‡</sup>        | 76.87 <sup>‡</sup>        | _     | 95.39 <sup>‡</sup>        | $90.56^{\ddagger}$        | 75.56 <sup>‡</sup>        | _            |
| EAG (real, real)        | 97.84 | <b>94.36</b> <sup>‡</sup> | <b>82.07</b> <sup>‡</sup> | 97.49         | <b>95.71</b> <sup>‡</sup> | <b>91.51</b> ‡            | <b>76.99</b> ‡            | 95.16 | 95.47 <sup>‡</sup>        | <b>90.72</b> <sup>‡</sup> | <b>75.76</b> <sup>‡</sup> | 94.94        |

#### • Experiments

- Analysis: word structure predication
  - OOV words
    - Overall

| STD(real,real) | 67.98% |
|----------------|--------|
| EAG(real,real) | 69.01% |

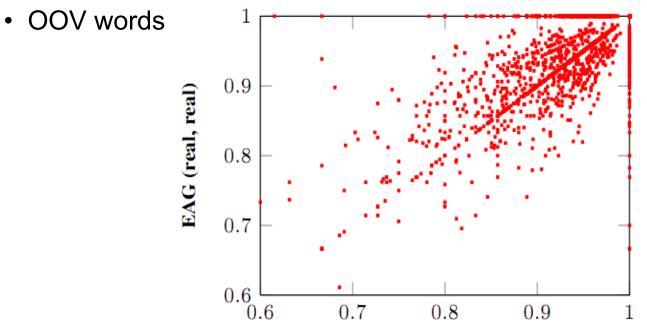
Assuming that the segmentation is correct

| STD(real,real) | 87.64% |
|----------------|--------|
| EAG(real,real) | 89.07% |

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June.

#### • Experiments

• Analysis: word structure predication



STD (real, real)

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June.

- This paper investigate joint models for simultaneously extracting drugs, diseases and adverse drug events. The joint models have two main advantages.
  - They make use of information integration to facilitate performance improvement
  - They reduce error propagation in pipeline methods

#### **Gliclazide**<sub>drug</sub>-induced **acute hepatitis**<sub>disease</sub>

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

- We define the action as:
  - O, which marks the current word as not belong to either a drug or disease mention.
  - BC, which marks the current word as the beginning of a drug mention.
  - BD, which marks the current word as the beginning of a disease mention.
  - I, which marks the current word as part of a drug or disease mention but not the beginning.

#### • For example

- Given a sentence: Gliclazide-induced acute hepatitis.
- The action sequence: "BC O O BD I O " yields the result "Gliclazide<sub>drug</sub>-induced acute hepatitis<sub>disease</sub>."

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

- We define the state of the joint model as a tuple <I, ds, dg, s>
  - I is a label sequence
  - ds is a list of readily-recognized disease entity mentions
  - dg is a list of readily-recognized drug entity mentions
  - s is a set of ADEs
- Two more actions are defined to achieve this
  - N, which indicates that a pair of entities does not have an ADE relation
  - Y, which indicates that a pair of entities has an ADE relation

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

- State transition examples
  - The sentence: Hepatitis caused by methotrexate and etretinate.
  - The action sequence: BD O O BC O Y BC O Y

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

• State transition examples

state <l, ds, dg, s>

<[],[],[],[]>

next action

BD

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

• State transition examples

state <l, ds, dg, s>

<[BD],[],[],[]>

next action

0

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

• State transition examples

state <l, ds, dg, s>

next action

<[BD,O],[Hepatitis],[],[]>

0

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

• State transition examples

state <l, ds, dg, s>

next action

<[BD,O,O],[Hepatitis],[],[]>

BC

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

• State transition examples

state <l, ds, dg, s>

next action

<[BD,O,O,BC],[Hepatitis],[],[]>

0

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

State transition examples

state <l, ds, dg, s>

<[BD,O,O,BC,O],[Hepatitis],[methotrexate],[]>

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceddings of IJCAI 2016. New York City, USA, July.

next action

Y

State transition examples

state <l, ds, dg, s>

<[BD,O,O,BC,O,Y],[Hepatitis],[methotrexate],[(Hepatitis,methotrexate)]>

next action

BC

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

State transition examples

state <l, ds, dg, s>

<[BD,O,O,BC,O,Y,BC],[Hepatitis],[methotrexate],[(Hepatitis,methotrexate)]>

next action

0

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

State transition examples

state <l, ds, dg, s>

<[BD,O,O,BC,O,Y,BC,O],[Hepatitis],[methotrexate,etretinate],[(Hepatitis, methotrexate)]>

next action



Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

State transition examples

state <I, ds, dg, s>

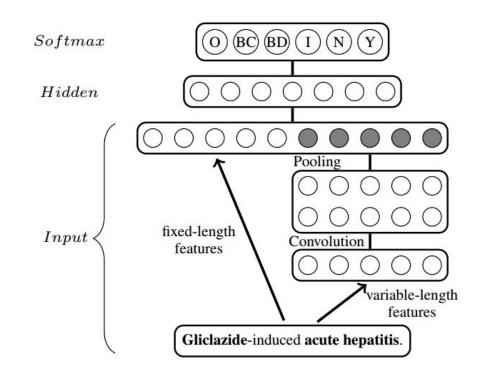
<[BD,O,O,BC,O,Y,BC,O,Y],[Hepatitis],[methotrexate,etretinate],[(Hepatitis,methotrexate),(Hepatitis,etretinate)]>

next action

<EOS>

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

• The neural joint model



Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

- Search and learning
  - Greedy
  - Local

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

#### • Experiments

- Data: ADE corpus
- Metrics: Standard precision (P), recall (R), F1-measure (F1) are used for evaluation
- Preprocessing: The Stanford CoreNLP toolkit7 is utilized for preprocessing

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

• Experiments Results

| Method                      | Entity | y Recog | nition                | ADE extraction |      |                |  |
|-----------------------------|--------|---------|-----------------------|----------------|------|----------------|--|
| Methou                      | P R    |         | <b>F</b> <sub>1</sub> | P              | R    | $\mathbf{F}_1$ |  |
| Li <i>et al</i> .<br>[2015] | 75.9   | 71.6    | 73.6                  | 55.2           | 47.9 | 51.1           |  |
| Baseline                    | 77.8   | 72.0    | 74.8                  | 60.7           | 51.5 | 55.7           |  |
| Discrete Joint              | 80.0   | 75.1    | 77.5                  | 65.1           | 56.7 | 60.6           |  |
| Neural Joint                | 79.5   | 79.6    | 79.5                  | 64.0           | 62.9 | 63.4           |  |

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

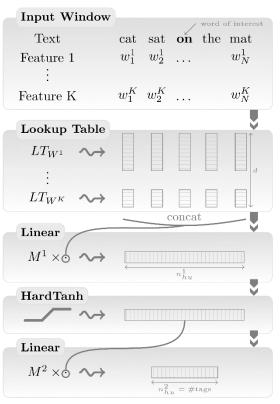
# Outline

- Motivation
- Statistical Models
- Deep Learning Models

 Features trained for one task can be useful for related tasks. Multi-task learning (MTL) leverages this idea in a more systematic way. This paper trained jointly POS, CHUNK and NER using the window approach network.

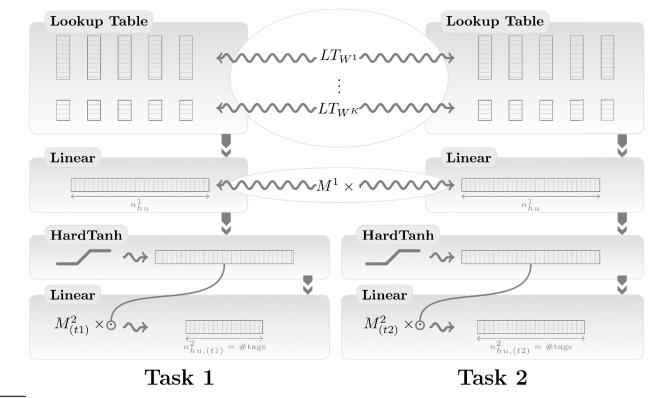
Collobert, Ronan, et al. "Natural language processing (almost) from scratch." *Journal of Machine Learning Research* 12.Aug (2011): 2493-2537.

#### • window approach network.



Collobert, Ronan, et al. "Natural language processing (almost) from scratch." *Journal of Machine Learning Research* 12.Aug (2011): 2493-2537.

• Example of multitasking with NN



Collobert, Ronan, et al. "Natural language processing (almost) from scratch." *Journal of Machine Learning Research* 12.Aug (2011): 2493-2537.

- All models share the lookup table parameters
- The parameters of the first linear layers are shared in the window approach case
- Training is achieved by minimizing the loss averaged across all tasks

Collobert, Ronan, et al. "Natural language processing (almost) from scratch." *Journal of Machine Learning Research* 12.Aug (2011): 2493-2537.

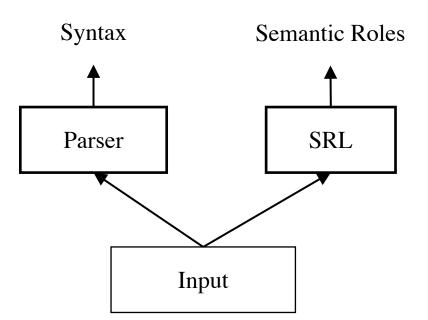
# Joint Tagging, Chunking and NER

• Experiments

| Approach          | POS             | CHUNK | NER   |
|-------------------|-----------------|-------|-------|
|                   | (PWA)           | (F1)  | (F1)  |
| Benchmark Systems | 97.24           | 94.29 | 89.31 |
|                   | Window Approach |       |       |
| NN+SLL+LM2        | 97.20           | 93.63 | 88.67 |
| NN+SLL+LM2+MTL    | 97.22           | 94.10 | 88.62 |

Collobert, Ronan, et al. "Natural language processing (almost) from scratch." *Journal of Machine Learning Research* 12.Aug (2011): 2493-2537.

• Model

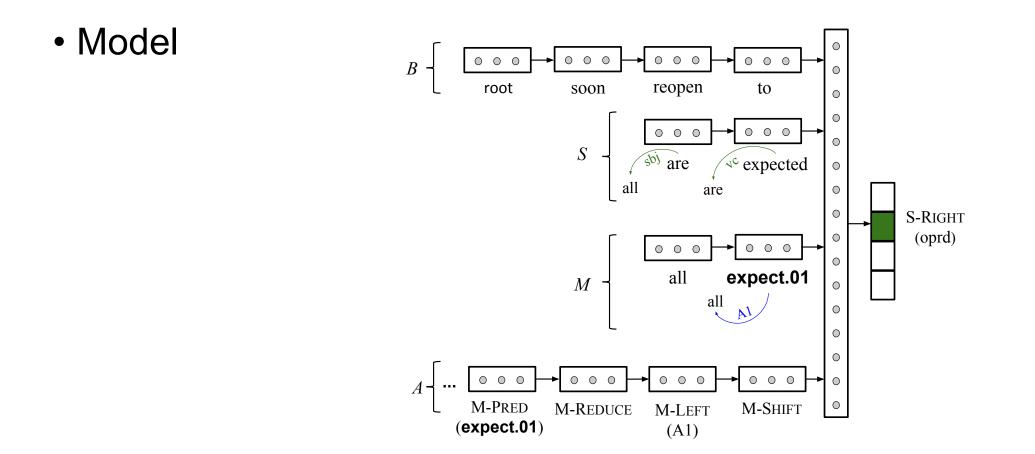


Peng Shi, Zhiyang Teng and Yue Zhang. *Exploiting Mutual Benefits between Syntax and Semantic Roles using Neural Network*. In Proceeddings of EMNLP 2016.

• Experiment Results

| Model                           | $\mathbf{F_1}$      | UAS   | LAS   |
|---------------------------------|---------------------|-------|-------|
| Bi-LSTM                         | 72.71               | -     | -     |
| S-LSTM                          | -                   | 84.33 | 82.10 |
| $DEP \rightarrow SRL(lab/lstm)$ | 73.00/ <b>74.18</b> | 84.33 | 82.10 |
| SRL→DEP                         | 72.71               | 84.75 | 82.62 |
| Joint                           | 73.84               | 85.15 | 82.91 |

Peng Shi, Zhiyang Teng and Yue Zhang. *Exploiting Mutual Benefits between Syntax and Semantic Roles using Neural Network*. In Proceeddings of EMNLP 2016.



Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).

#### Shift-Reduce

| Transition            | S                                 | M               | В                                            | Dependency                                                 |
|-----------------------|-----------------------------------|-----------------|----------------------------------------------|------------------------------------------------------------|
|                       | []                                | []              | [all, are, expected, to, reopen, soon, root] | _                                                          |
| S-Shift               | [all]                             | []              | [all, are, expected, to, reopen, soon, root] | —                                                          |
| M-Shift               | [all]                             | [all]           | [are, expected, to, reopen, soon, root]      | _                                                          |
| S-LEFT(sbj)           | 0                                 | [all]           | [are, expected, to, reopen, soon, root]      | all $\stackrel{sbj}{\longleftarrow}$ are                   |
| S-Shift               | [are]                             | [all]           | [are, expected, to, reopen, soon, root]      | —                                                          |
| M-Shift               | [are]                             | [all, are]      | [expected, to, reopen, soon, root]           | —                                                          |
| S-RIGHT(vc)           | [are, expected]                   | [all, are]      | [expected, to, reopen, soon, root]           | are $\xrightarrow{vc}$ expected                            |
| M-PRED(expect.01)     | [are, expected]                   | [all, are]      | [expected, to, reopen, soon, root]           | —                                                          |
| M-REDUCE              | [are, expected]                   | [all]           | [expected, to, reopen, soon, root]           | —                                                          |
| M-LEFT(A1)            | [are, expected]                   | [all]           | [expected, to, reopen, soon, root]           | all $\stackrel{A1}{\longleftarrow}$ expect.01              |
| M-Shift               | [are, expected]                   | [all, expected] | [to, reopen, soon, root]                     | _                                                          |
| ***S-RIGHT(oprd)      | [are, expected, to]               | [all, expected] | [to, reopen, soon, root]                     | expected $\xrightarrow{\text{oprd}}$ to                    |
| M-RIGHT(C-A1)         | [are, expected, to]               | [all, expected] | [to, reopen, soon, root]                     | expect.01 $\xrightarrow{\text{C-A1}}$ to                   |
| M-REDUCE              | [are, expected, to]               | [all]           | [to, reopen, soon, root]                     | _                                                          |
| M-Shift               | [are, expected, to]               | [all, to]       | [reopen, soon, root]                         | —                                                          |
| S-RIGHT( <i>im</i> )  | [are, expected, to, reopen]       | [all, to]       | [reopen, soon, root]                         | to $\xrightarrow{im}$ reopen                               |
| M-PRED(reopen.01)     | [are, expected, to, reopen]       | [all, to]       | [reopen, soon, root]                         | _                                                          |
| M-REDUCE              | [are, expected, to, reopen]       | [all]           | [reopen, soon, root]                         | —                                                          |
| M-LEFT(A1)            | [are, expected, to, reopen]       | [all]           | [reopen, soon, root]                         | all $\stackrel{A1}{\longleftarrow}$ reopen.01              |
| M-REDUCE              | [are, expected, to, reopen]       | []              | [reopen, soon, root]                         | —                                                          |
| M-Shift               | [are, expected, to, reopen]       | [reopen]        | [soon, root]                                 | —                                                          |
| S-RIGHT( <i>tmp</i> ) | [are, expected, to, reopen, soon] | [reopen]        | [soon, root]                                 | reopen $\xrightarrow{\text{tmp}}$ soon                     |
| M-RIGHT(AM-TMP)       | [are, expected, to, reopen, soon] | [reopen]        | [soon, root]                                 | reopen.01 $\stackrel{\text{AM-TMP}}{\longrightarrow}$ soon |
| M-REDUCE              | [are, expected, to, reopen, soon] | []              | [soon, root]                                 | _                                                          |
| M-Shift               | [are, expected, to, reopen, soon] | [soon]          | [root]                                       | _                                                          |
| S-REDUCE              | [are, expected, to, reopen]       | [soon]          | [root]                                       | _                                                          |
| S-REDUCE              | [are, expected, to]               | [soon]          | [root]                                       | —                                                          |
| S-REDUCE              | [are, expected]                   | [soon]          | [root]                                       | —                                                          |
| S-REDUCE              | [are]                             | [soon]          | [root]                                       |                                                            |
| S-LEFT(root)          |                                   | [soon]          | [root]                                       | are $\stackrel{\text{root}}{\longleftarrow}$ root          |
| S-Shift               | [root]                            | [soon]          | [root]                                       | —                                                          |
| M-REDUCE              | [root]                            | []              | [root]                                       | —                                                          |
| M-Shift               | [root]                            | [root]          |                                              | _                                                          |

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).

• Compared with state-of-art

| Model                       | LAS  | Sem.  | Macro |
|-----------------------------|------|-------|-------|
| Wodel                       | LAS  | $F_1$ | $F_1$ |
| joint models:               |      |       |       |
| Lluís and Màrquez (2008)    | 85.8 | 70.3  | 78.1  |
| Henderson et al. (2008)     | 87.6 | 73.1  | 80.5  |
| Johansson (2009)            | 86.6 | 77.1  | 81.8  |
| Titov et al. (2009)         | 87.5 | 76.1  | 81.8  |
| CoNLL 2008 best:            |      |       |       |
| #3: Zhao and Kit (2008)     | 87.7 | 76.7  | 82.2  |
| #2: Che et al. (2008)       | 86.7 | 78.5  | 82.7  |
| #2: Ciaramita et al. (2008) | 87.4 | 78.0  | 82.7  |
| #1: J&N (2008)              | 89.3 | 81.6  | 85.5  |
| Joint (this work)           | 89.1 | 80.5  | 84.9  |

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).

• Joint VS Pipeline

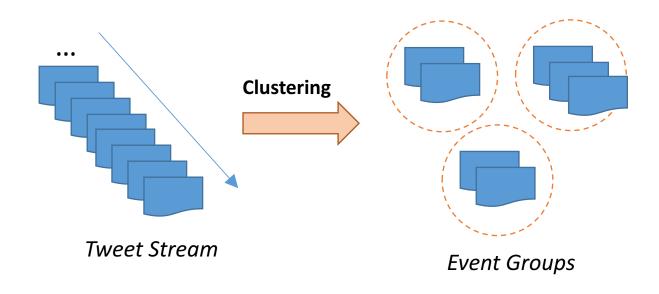
| Model          | LAS   | Sem. $F_1$ | <b>Sem.</b> <i>F</i> <sub>1</sub> | Macro |
|----------------|-------|------------|-----------------------------------|-------|
|                |       | (WSJ)      | (Brown)                           | $F_1$ |
| CoNLL'09 best: |       |            |                                   |       |
| #3 G+ '09      | 88.79 | 83.24      | 70.65                             | 86.03 |
| #2 C+ '09      | 88.48 | 85.51      | 73.82                             | 87.00 |
| #1 Z+ '09a     | 89.19 | 86.15      | 74.58                             | 87.69 |
| this work:     |       |            |                                   |       |
| Syntax-only    | 89.83 |            |                                   |       |
| Semonly        |       | 84.39      | 73.87                             |       |
| Hybrid         | 89.83 | 84.58      | 75.64                             | 87.20 |
| Joint          | 89.94 | 84.97      | 74.48                             | 87.45 |
| pipelines:     |       |            |                                   |       |
| R&W '14        |       | 86.34      | 75.90                             |       |
| L+ '15         |       | 86.58      | 75.57                             |       |
| T+ '15         |       | 87.30      | 75.50                             |       |
| F+ '15         |       | 87.80      | 75.50                             |       |

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).

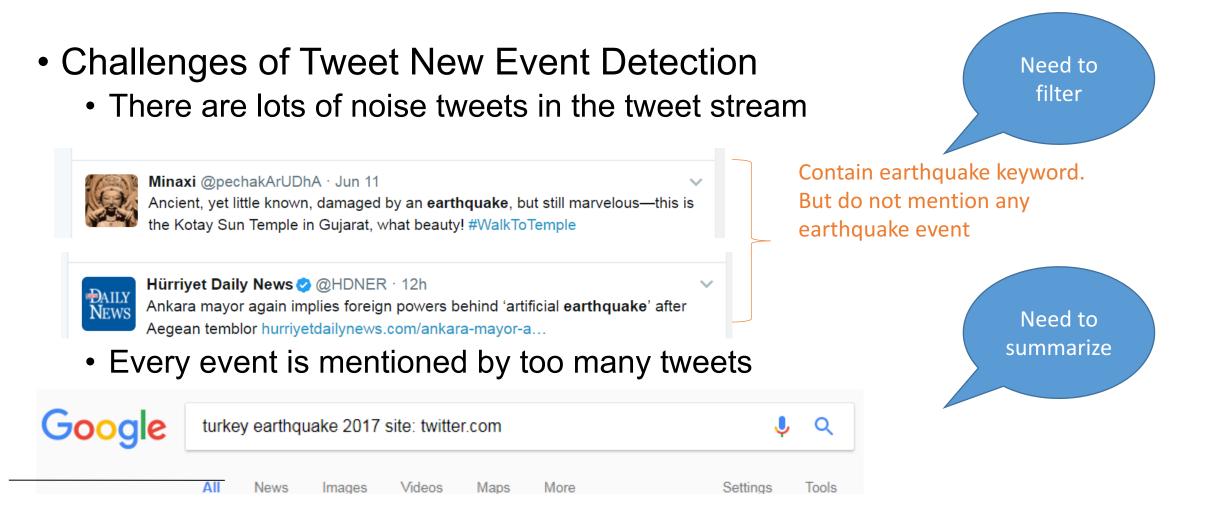
 This paper build a joint model to filter, cluster, and summarize the tweets for new events. In particular, deep representation learning is used to vectorize tweets, which serves as basis that connects tasks. A neural stacking model is used for integrating a pipeline of different sub tasks, and for better sharing between the predecessor and successors.

Wang, Zhongqing, et al. "A Neural Model for Joint Event Detection and Summarization." IJCAI, 2017.

- Tweet New Event Detection
  - Aims to identify first stories in a tweet stream
    - Incremental clustering is always used to cluster tweets into event groups.

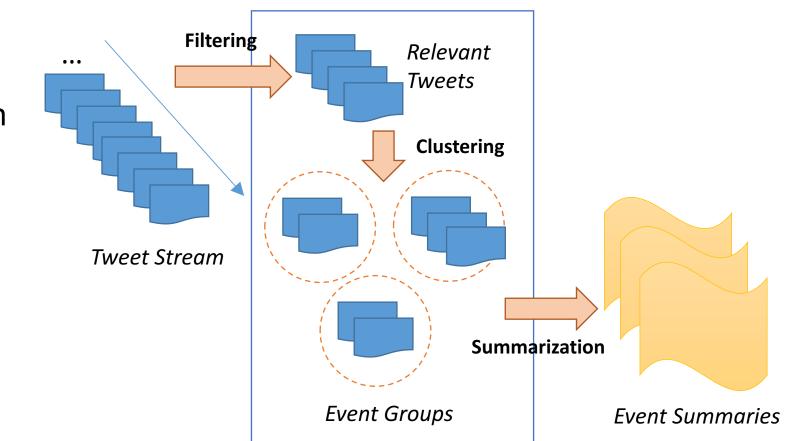


Wang, Zhongqing, et al. "A Neural Model for Joint Event Detection and Summarization." IJCAI, 2017.



Wang, Zhongqing, et al. "A Neural Model for Joint Event Detection and Summarization." IJCAI, 2017.

- Solution: Not only cluster events, but also filter tweets and summarize events.
  - Tweets Filtering
  - Event Clustering
  - Event Summarization

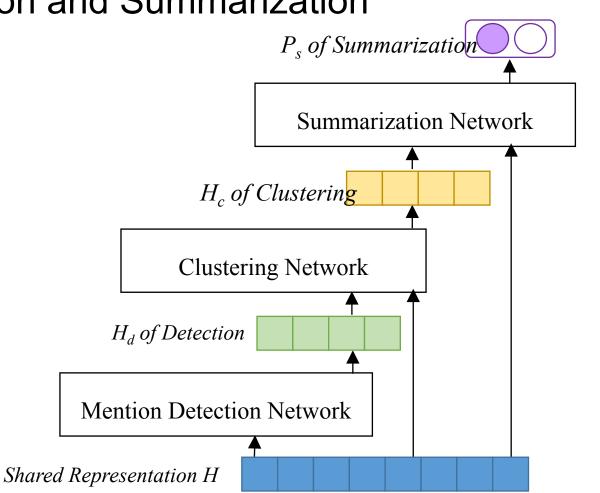


- Correlation between Different Stages
  - A tweet that comprehensively describes an event should be scored highly in both the *relevance-filtering* and the *extractive-summarization* steps.
  - Better understanding of a tweet is helpful for both *relevance-filtering* and *event-clustering*.

- Detect and Summarize Event Jointly
  - A deep neural network is used to model the three subtasks jointly
    - Representation learning is used to transform each incoming tweet into a dense low dimension vector
    - *Neural stacking* is used to integrate different subtasks.

Wang, Zhongqing, et al. "A Neural Model for Joint Event Detection and Summarization." IJCAI, 2017.

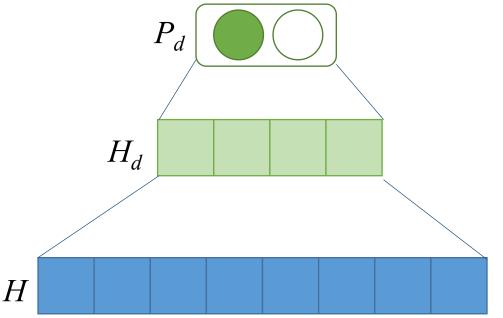
- Overview of Joint Event Detection and Summarization
  - Shared Representation
    - LSTM
  - Joint Model
    - Tweet Filtering
    - Event Clustering
    - Event Summarization



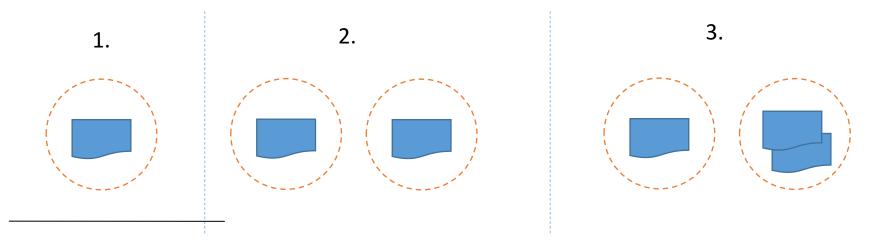
#### • Tweet Filtering

- We classify each tweet in the stream as either being relevant or irrelevant to the events of concern.
  - A binary classification task
  - A multi-layer perceptron

$$\begin{split} H_d &= \sigma(W_d^h H + b_d^h),\\ _{\text{hidden variables of tweet}}\\ P_d &= \text{softmax}(W_d H_d + B_d) \end{split}$$



- Event Clustering
  - Incremental clustering of tweets [Aggarwal and Subbian, 2012].
    - Given a new tweet, decide whether it belongs to an existing event cluster, or describes a new event
    - A key issue is the calculation of *similarity between tweets*.



Wang, Zhongqing, et al. "A Neural Model for Joint Event Detection and Summarization." IJCAI, 2017.

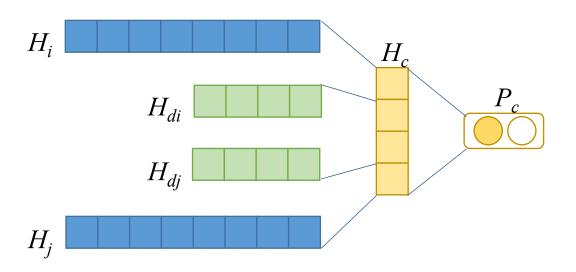
- Siamese Network for calculating similarity
  - Siamese Network

 $H_{c} = \sigma(W_{c}^{h}(H_{i} \oplus H_{j}) + b_{c}^{h})$   $H_{c} = \operatorname{softmax}(W_{c}H_{c} + B_{c})$   $H_{i}$   $H_{i}$   $H_{i}$ 

Wang, Zhongqing, et al. "A Neural Model for Joint Event Detection and Summarization." IJCAI, 2017.

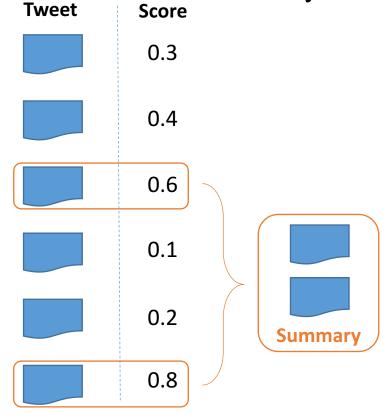
• Integrating with tweet filtering

 $H_c = \sigma(W_c^h(H_i \oplus H_j) + b_c^h) \Longrightarrow H_c = \sigma(W_c^h(H_i \oplus H_j \oplus H_{d_i} \oplus H_{d_j}) + b_c^h),$ 



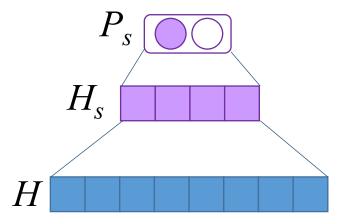
Hidden variables from tweet filtering

- Event Summarization
  - We rank all the tweets in the cluster using a probability score, and select topn to build the summary.



• Event Summarization (cont.) • A multi-layer perceptron  $H_s = \sigma(W_s^h[H] + b_s^h)$ 

 $P_s = \operatorname{softmax}(W_s H_s + B_s)$ 

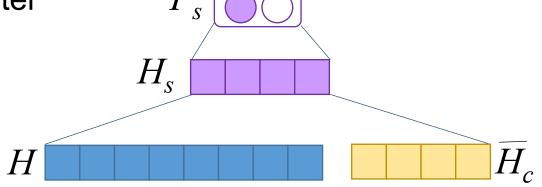


Wang, Zhongqing, et al. "A Neural Model for Joint Event Detection and Summarization." IJCAI, 2017.

• Integrating with event clustering  $H_s = \sigma(W^h_s(H \oplus \overline{H^h_c}) + b^h_s)$ 

 $P_s = \operatorname{softmax}(W_s H_s + B_s)$ 

•  $\overline{H_c^h}$  is the sum of  $H_c^h$  between the tweet X and all the other tweets in the same cluster  $P_s$ 



Wang, Zhongqing, et al. "A Neural Model for Joint Event Detection and Summarization." IJCAI, 2017.

- Data Collection
  - All data were collected by using the Twitter streaming API
    - consist of tweets from June 2013 until April 2016
  - The tweets are collected with relevant domain keywords
    - Earthquake:
      - earthquake, shake, refugees, victims
    - DDoS:
      - ddos, anonymous attack, spoofed attack, zombies host

#### • Event Annotation

- We adopt the approach employed by NIST in labeling TDT data [Allan, 2002]
  - A relevant tweet must explicitly mention the event
  - The main purpose of the tweet should be to inform of the event
- Statistic of dataset

|                 | Earthquake | DDoS  |
|-----------------|------------|-------|
| #Event          | 47         | 170   |
| #Post           | 12090      | 17760 |
| Vocabulary size | 11462      | 15032 |

Wang, Zhongqing, et al. "A Neural Model for Joint Event Detection and Summarization." *IJCAI*, 2017.

- Evaluation Metrics
  - Clustering
    - We use the standard TDT evaluation procedure [Allan, 2002], where normalized *Topic Weighted Minimum Cost (C<sub>min</sub>)* is taken for evaluating clustering accuracy
  - Summarization
    - We use ROUGE-1.5.5 [Lin, 2004] for summary evaluation. We report *unigram overlap (ROUGE-1)* for assessing informativeness.
  - Firstly, we evaluate our proposed model on *earthquake* domain.

Wang, Zhongqing, et al. "A Neural Model for Joint Event Detection and Summarization." IJCAI, 2017.

- Effectiveness of Event Mention Detection
  - Below table indicates the event clustering performance with/without the event mention detection.
    - *Cosine* is a traditional strategy with bag-of-words as document representation [Aggarwal and Subbian, 2012]
    - LSTM means calculating the similarity using the LSTM based Siamese network [Mueller and Thyagarajan, 2016].

| Method             | $C_{min}$ |                                                                         |
|--------------------|-----------|-------------------------------------------------------------------------|
| Random             | 86.2      |                                                                         |
| Cosine – filtering | 65.8      |                                                                         |
| Cosine + filtering | 60.9      | Event filtering always outperform those without event mention filtering |
| LSTM – filtering   | 64.4      |                                                                         |
| LSTM + filtering   | 58.8      | Neural Network is better than BOW model                                 |

- Effectiveness of Joint Modeling
  - The results of different ablation baselines

| Method        | Clustering | Summarization |                                                           |
|---------------|------------|---------------|-----------------------------------------------------------|
| LSTM-Pipeline | 58.8       | 18.2          |                                                           |
| LSTM-Joint    | 52.2       | 19.4          |                                                           |
| +Detect       | 50.2       | 20.6          | Only integrate <i>filtering</i> for <i>clustering</i>     |
| +Cluster      | 47.2       | 20.1          | Only integrate <i>clustering</i> for <i>summarization</i> |
| JEDS          | 45.8       | 21.3          |                                                           |

Wang, Zhongqing, et al. "A Neural Model for Joint Event Detection and Summarization." IJCAI, 2017.

#### Comparison with State-of-the-art

Comparison of clustering algorithms

| State-of-the-art models |
|-------------------------|
| for event clustering    |

| Method | $C_{min}$ |
|--------|-----------|
| LSH    | 66.7      |
| AS12   | 60.9      |
| JEDS   | 45.8      |

#### Comparison of summarization algorithms

|                                       | Method       | ROUGE-1 |
|---------------------------------------|--------------|---------|
|                                       | AS12+LexRank | 18.8    |
| State-of-the-art model for            | AS12+CL16    | 19.6    |
| event clustering and<br>summarization | LSH+LexRank  | 17.2    |
|                                       | LSH+CL16     | 19.1    |
|                                       | JEDS         | 21.3    |

Wang, Zhongqing, et al. "A Neural Model for Joint Event Detection and Summarization." IJCAI, 2017.

- Results on DDoS Domain
  - Comparison with state-of-the-art

| Method       | Clustering | Summarization |
|--------------|------------|---------------|
| AS12+LexRank | 64.4       | 15.5          |
| LSH+CL16     | 57.8       | 16.5          |
| JEDS         | 38.3       | 18.7          |

Wang, Zhongqing, et al. "A Neural Model for Joint Event Detection and Summarization." IJCAI, 2017.

#### • A restaurant review on Yelp.com

#### DB Bistro Moderne O Unclaimed

★ ★ ★ 📩 45 reviews 🖬 Details

\$\$\$ • Modern European, American (Traditional) 🖉 Edit



"I had never tasted **foie gras** before and despite some countries banning it, I decided to give it a try." in 13 reviews



"We has the steak tartare, frenchie burger, original db burger, fries, and for dessert durian soufflé and maccarons." in 6 reviews



"The restaurant is located at basement 1 of Marina Bay Sands- a luxurious integrated resort with a world-class casino and famous Sands Skypark." in 4 reviews

 Opinion Recommendation: a novel task of jointly predicting a custom review with a rating score that a certain user would give to a certain product or service, given existing reviews and rating scores to the product or service by other users, and the reviews that the user has given to other products and services.

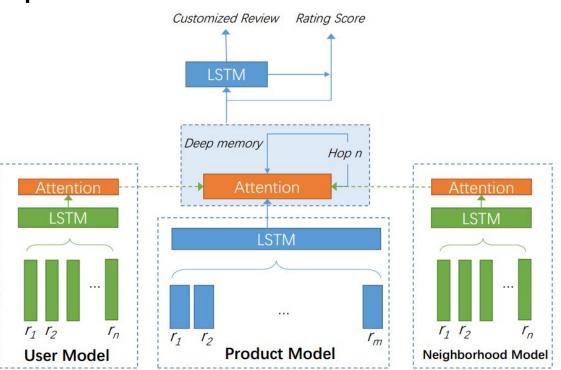
|        | Product 1    | Product 2    | Product 3    |
|--------|--------------|--------------|--------------|
| User A | Review + 3.0 | Review + 4.5 | Review + 4.5 |
| User B |              | Review + 2.5 | Review + 3.5 |
| User C | Review + 4.0 |              | Review +?    |

Wang, Zhongqing, et al. "Opinion Recommendation Using A Neural Model." EMNLP, 2017.

 This paper use a single neural network to model users and products, capturing their correlation and generating customised product representations using a deep memory network, from which customised ratings and reviews are constructed jointly.

Wang, Zhongqing, et al. "Opinion Recommendation Using A Neural Model." EMNLP, 2017.

Overview of proposed model



Wang, Zhongqing, et al. "Opinion Recommendation Using A Neural Model." EMNLP, 2017.

#### • Experiments

- Data: collected from the yelp academic dataset, provided by Yelp.com
- Evaluation: use the ROUGE-1.5.5 toolkit for evaluating the performance of customized review generation, and report unigram overlap (ROUGE-1) as a means of assessing informativeness.; Mean Square Error (MSE) is used as the evaluation metric for measuring the performance of customized rating score prediction.

Wang, Zhongqing, et al. "Opinion Recommendation Using A Neural Model." EMNLP, 2017.

#### Results

|                  | Rating | Generation |
|------------------|--------|------------|
| RS-Average       | 1.280  | _          |
| <b>RS-Linear</b> | 1.234  | -          |
| RS-Item          | 1.364  | -          |
| RS-MF            | 1.143  | -          |
| Sum-Opinosis     | -      | 0.183      |
| Sum-LSTM-Att     | -      | 0.196      |
| Joint            | 1.023  | 0.250      |

Wang, Zhongqing, et al. "Opinion Recommendation Using A Neural Model." *EMNLP*, 2017.

#### Joint Entity and Sentiment Extraction

 Open domain targeted sentiment is the joint information extraction task that finds target mentions together with the sentiment towards each mention from a text corpus.

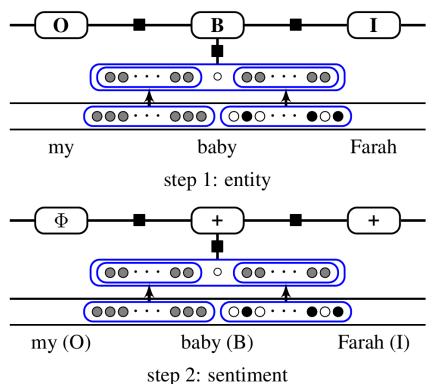
Zhang, Meishan, Yue Zhang, and Duy-Tin Vo. "Neural Networks for Open Domain Targeted Sentiment." *EMNLP*. 2015.

### Joint Entity and Sentiment Extraction

- This paper
  - make an empirical comparison between discrete and neural CRF models, and further combine the strengths of each model via feature integration.
  - compare the effects of the pipeline, joint and collapsed models for open targeted sentiment analysis under the neural model settings.

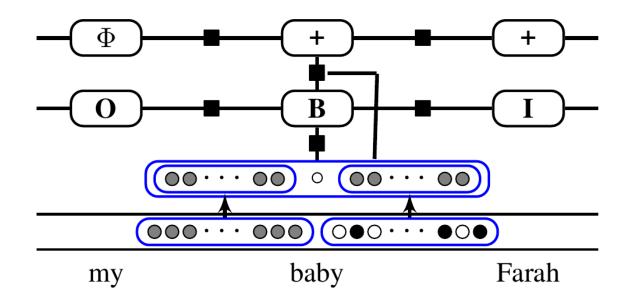
Zhang, Meishan, Yue Zhang, and Duy-Tin Vo. "Neural Networks for Open Domain Targeted Sentiment." *EMNLP*. 2015.

Integrated models for pipeline



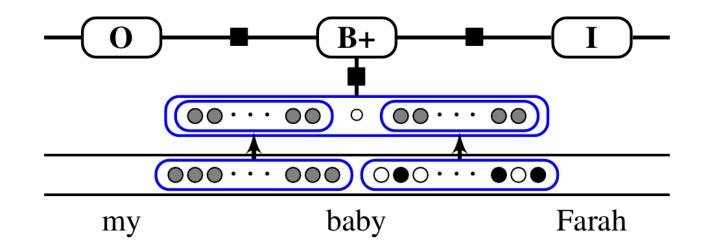
Zhang, Meishan, Yue Zhang, and Duy-Tin Vo. "Neural Networks for Open Domain Targeted Sentiment." *EMNLP*. 2015.

• Integrated models for joint



Zhang, Meishan, Yue Zhang, and Duy-Tin Vo. "Neural Networks for Open Domain Targeted Sentiment." *EMNLP*. 2015.

• Integrated models for collapsed



Zhang, Meishan, Yue Zhang, and Duy-Tin Vo. "Neural Networks for Open Domain Targeted Sentiment." *EMNLP*. 2015.

• Data of Mitchell et al. (2013)

| Domain  | #Sent | #Entities | #+    | #-    | #0    |
|---------|-------|-----------|-------|-------|-------|
| English | 2,350 | 3,288     | 707   | 275   | 2,306 |
| Spanish | 5,145 | 6,658     | 1,555 | 1,007 | 4,096 |

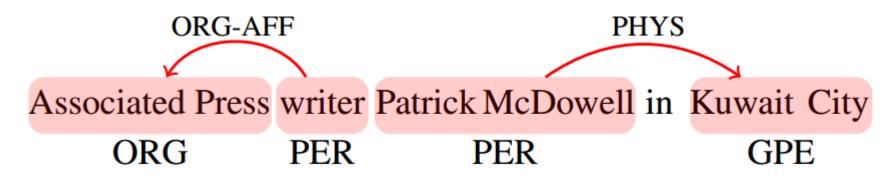
Zhang, Meishan, Yue Zhang, and Duy-Tin Vo. "Neural Networks for Open Domain Targeted Sentiment." *EMNLP*. 2015.

#### Results

|            |       | English |       |       |       | Spanish |       |        |       |       |       |       |
|------------|-------|---------|-------|-------|-------|---------|-------|--------|-------|-------|-------|-------|
| Model      |       | Entity  |       |       | SA    |         |       | Entity |       |       | SA    |       |
|            | Р     | R       | F     | Р     | R     | F       | Р     | R      | F     | Р     | R     | F     |
| Pipeline   |       |         |       |       |       |         |       |        |       |       |       |       |
| discrete   | 59.37 | 34.83   | 43.84 | 42.97 | 25.21 | 31.73   | 70.77 | 47.75  | 57.00 | 46.55 | 31.38 | 37.47 |
| neural     | 53.64 | 44.87   | 48.67 | 37.53 | 31.38 | 34.04   | 65.59 | 47.82  | 55.27 | 41.50 | 30.27 | 34.98 |
| integrated | 60.69 | 51.63   | 55.67 | 43.71 | 37.12 | 40.06   | 70.23 | 62.00  | 65.76 | 45.99 | 40.57 | 43.04 |
| Joint      |       |         |       |       |       |         |       |        |       |       |       |       |
| discrete   | 59.55 | 34.06   | 43.30 | 43.09 | 24.67 | 31.35   | 71.08 | 47.56  | 56.96 | 46.36 | 31.02 | 37.15 |
| neural     | 54.45 | 42.12   | 47.17 | 37.55 | 28.95 | 32.45   | 65.05 | 47.79  | 55.07 | 40.28 | 29.58 | 34.09 |
| integrated | 61.47 | 49.28   | 54.59 | 44.62 | 35.84 | 39.67   | 71.32 | 61.11  | 65.74 | 46.67 | 39.99 | 43.02 |
| Collapsed  |       |         |       |       |       |         |       |        |       |       |       |       |
| discrete   | 64.16 | 26.03   | 36.95 | 48.35 | 19.64 | 27.86   | 73.18 | 35.11  | 47.42 | 49.85 | 23.91 | 32.30 |
| neural     | 58.53 | 37.25   | 45.30 | 43.12 | 27.44 | 33.36   | 67.43 | 43.2   | 52.64 | 42.61 | 27.27 | 33.25 |
| integrated | 63.55 | 44.98   | 52.58 | 46.32 | 32.84 | 38.36   | 73.51 | 53.3   | 61.71 | 47.69 | 34.53 | 40.00 |

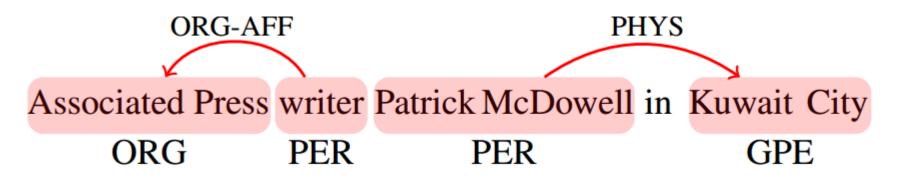
Zhang, Meishan, Yue Zhang, and Duy-Tin Vo. "Neural Networks for Open Domain Targeted Sentiment." *EMNLP*. 2015.

- Background
  - Relation Extraction



Miwa, Makoto, and Mohit Bansal. "End-to-end relation extraction using lstms on sequences and tree structures." In proceedings of ACL (2016).

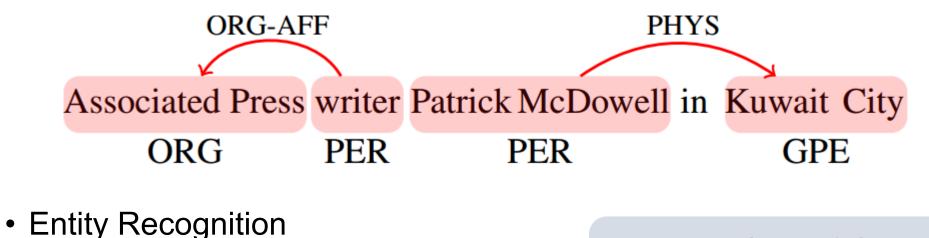
- Background
  - Relation Extraction



- Entity Recognition
- Relation Classification

Miwa, Makoto, and Mohit Bansal. "End-to-end relation extraction using lstms on sequences and tree structures." In proceedings of ACL (2016).

- Background
  - Relation Extraction



Relation Classification

Single Model Joint & End to End

Miwa, Makoto, and Mohit Bansal. "End-to-end relation extraction using lstms on sequences and tree structures." In proceedings of ACL (2016).

- Background
  - Relation Extraction

Single Model (Joint & End to End) Approach: Table Filling Related work:

- Miwa and Sasaki (2014)
- Miwa and Bansal (2016)

Miwa, Makoto, and Mohit Bansal. "End-to-end relation extraction using lstms on sequences and tree structures." In proceedings of ACL (2016).

#### Background

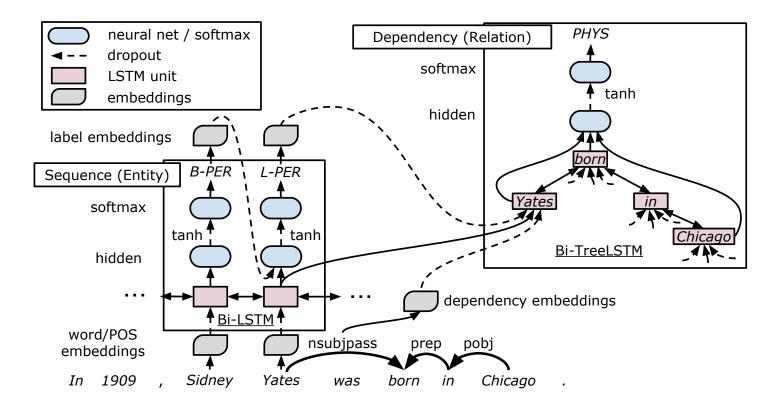
- Relation Extraction
  - Table-Filling Sequence
  - Miwa and Bansal (2016)

|            | Associated | Press   | writer     | Patrick | McDowell | in         | Kuwait  | City    |
|------------|------------|---------|------------|---------|----------|------------|---------|---------|
| Associated | 1 B-ORG    | 9⊥      | 16 🕹       | 22 ⊥    | 27 ⊥     | 31 ⊥       | 34 ⊥    | 36⊥     |
| Press      |            | 2 L-ORG | 10 ORG-AFF | 17 ⊥    | 23 ⊥     | 28 ⊥       | 32 ⊥    | 35 ⊥    |
| writer     |            |         | 3 U-PER    | 11 ⊥    | 18 🔟     | 24 ⊥       | 29 ⊥    | 33 ⊥    |
| Patrick    |            |         |            | 4 B-PER | 12 ⊥     | 19 ⊥       | 25 ⊥    | 30 ⊥    |
| McDowell   |            |         |            |         | 5 L-PER  | 13 ⊥       | 20 ⊥    | 26 PHYS |
| in         |            |         |            |         |          | <u>6 O</u> | 14 ⊥    | 21 ⊥    |
| Kuwait     |            |         |            |         |          |            | 7 B-GPE | 15⊥     |
| City       |            |         |            |         |          |            |         | 8 L-GPE |

Miwa, Makoto, and Mohit Bansal. "End-to-end relation extraction using lstms on sequences and tree structures." In proceedings of ACL (2016).

#### Background

- Relation Extraction
  - Table-Filling Sequence
  - Miwa and Bansal (2016)



Miwa, Makoto, and Mohit Bansal. "End-to-end relation extraction using lstms on sequences and tree structures." In proceedings of ACL (2016).

#### Background

#### Relation Extraction

- Table-Filling Sequence
- Miwa and Bansal (2016)

| Settings                        | Macro-F1 |  |  |  |  |  |  |
|---------------------------------|----------|--|--|--|--|--|--|
| No External Knowledge Resources |          |  |  |  |  |  |  |
| Our Model (SPTree)              | 0.844    |  |  |  |  |  |  |
| dos Santos et al. (2015)        | 0.841    |  |  |  |  |  |  |
| Xu et al. (2015a)               | 0.840    |  |  |  |  |  |  |
| +WordNet                        |          |  |  |  |  |  |  |
| Our Model (SPTree + WordNet)    | 0.855    |  |  |  |  |  |  |
| Xu et al. (2015a)               | 0.856    |  |  |  |  |  |  |
| Xu et al. (2015b)               | 0.837    |  |  |  |  |  |  |

Miwa, Makoto, and Mohit Bansal. "End-to-end relation extraction using lstms on sequences and tree structures." In proceedings of ACL (2016).

 This paper build a globally optimized neural model for end-toend relation extraction, proposing novel LSTM features in order to better learn context representation. In addition, this paper present a novel method to integrate syntactic information to facilitate global learning, yet requiring little background on syntactic grammars thus being easy to extend

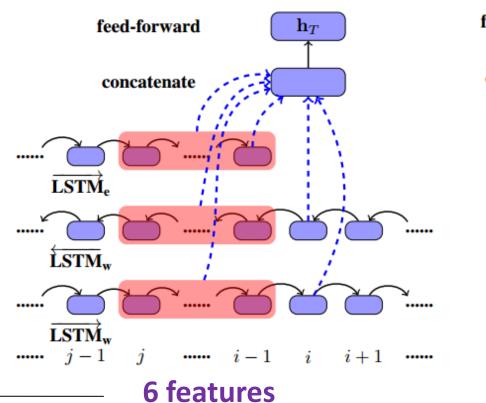
Zhang, Meishan, et al. "End-to-End Neural Relation Extraction with Global Optimization." *EMNLP*, 2017.

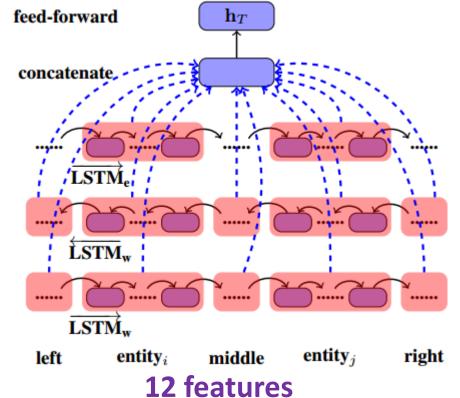
- Our Contributions
  - Beam Search with Global Learning

- Novel Syntactic Features
  - Without any background on syntactic grammars

Zhang, Meishan, et al. "End-to-End Neural Relation Extraction with Global Optimization." EMNLP, 2017.

Baseline

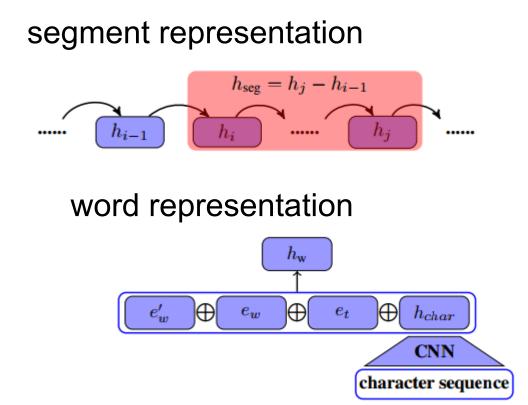




Zhang, Meishan, et al. "End-to-End Neural Relation Extraction with Global Optimization." EMNLP, 2017.

Baseline

Details



- Baseline
  - Classification
    - Greedy Search
    - Objective

$$\log(T, l_i^g, \Theta) = -\log p_{l_i^g}$$

Zhang, Meishan, et al. "End-to-End Neural Relation Extraction with Global Optimization." EMNLP, 2017.

#### Beam Search

Algorithm 1 Beam-search.  $agenda \leftarrow \{ (empty \ table, score=0.0) \}$ for *i* in  $1 \cdots$  max-step *next\_scored\_tables*  $\leftarrow$  { } for scored\_table in agenda  $labels \leftarrow NEXTLABELS(scored_table)$ for next\_label in labels new  $\leftarrow$  FILL(scored\_table, *next\_label*) ADDITEM(*next\_scored\_tables*, *new*)  $agenda \leftarrow \text{TOP-B}(next\_scored\_tables, B)$ 

Beam Search

Local: classification

$$\log(T, l_i^g, \Theta) = -\log p_{l_i^g}$$

Global: beam search

$$loss(x, T_i^g, \Theta) = -\log p_{T_i^g} = -\log \frac{score(T_i^g)}{\sum_{T_i'} score(T_i')}$$
$$score(T_i) = \sum_{j=0}^{i} score(T_{j-1}, l_j)$$

Comparative Experiments(ACE05 dataset, development dataset)

| Model      | Beam | Relation F1 |  |  |
|------------|------|-------------|--|--|
| Local      | 1    | 50.9        |  |  |
| Local(+SS) | 1    | 51.2        |  |  |
|            | 1    | 51.4        |  |  |
| Global     | 3    | 51.8        |  |  |
|            | 5    | 52.6        |  |  |

Zhang, Meishan, et al. "End-to-End Neural Relation Extraction with Global Optimization." EMNLP, 2017.

#### Syntactic Features

- Why not dependency path?
  - many paths caused dynamic outputting entities
  - requiring background on dependency grammar

#### Syntactic Features

- Encoder-Decoder Framework
  - Encoder : Sentence Representation
    - Usually Bi-LSTM(multi-layer)
  - Decoder : Parsing Decoding
    - Transition-based, Graph-based or other

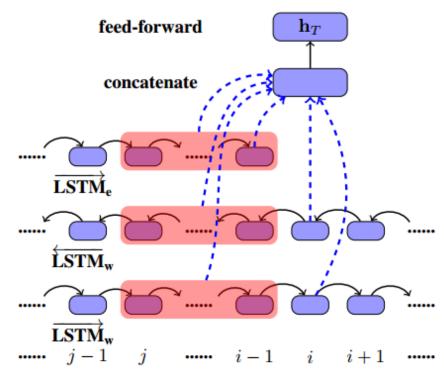
#### Syntactic Features

- Encoder-Decoder Framework
  - Encoder : Sentence Representation
    - Usually Bi-LSTM(multi-layer)
  - Decoder : Parsing Decoding
    - Transition-based, Graph-based or

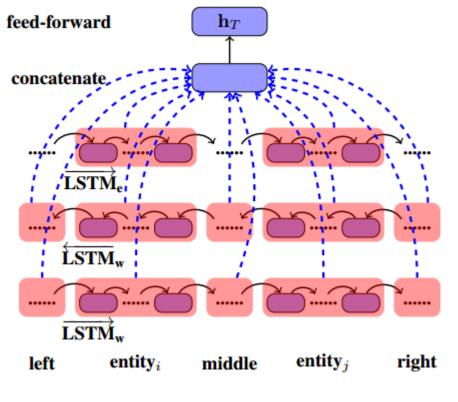
Simply dumping and build lstms based on the output!

Zhang, Meishan, et al. "End-to-End Neural Relation Extraction with Global Optimization." EMNLP, 2017.

#### Syntactic Features



6 features  $\rightarrow$  10 features



12 features  $\rightarrow$  22 features

- Syntactic Features
  - Comparative Experiments(ACE05 dataset, development dataset)

| Model  | Features | Entity F1 | Relation F1 |
|--------|----------|-----------|-------------|
| Local  | all      | 81.6      | 53.0        |
| Local  | -syn     | 81.5      | 50.9        |
| Global | all      | 81.9      | 54.2        |
|        | -syn     | 81.6      | 52.6        |

Zhang, Meishan, et al. "End-to-End Neural Relation Extraction with Global Optimization." *EMNLP*, 2017.

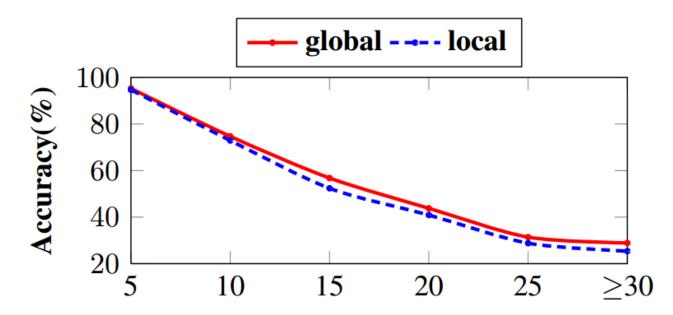
#### • Final Results

Comparative Experiments(test dataset)

| madal      | A      | CE05     | CONLL04 |             |  |
|------------|--------|----------|---------|-------------|--|
| model      | Entity | Relation | Entity  | Relation    |  |
| Our Model  | 83.6   | 57.5     | 85.6    | <b>67.8</b> |  |
| M&B (2016) | 83.4   | 55.6     |         |             |  |
| L&J (2014) | 80.8   | 49.5     |         |             |  |
| M&S (2014) |        |          | 80.7    | 61.0        |  |

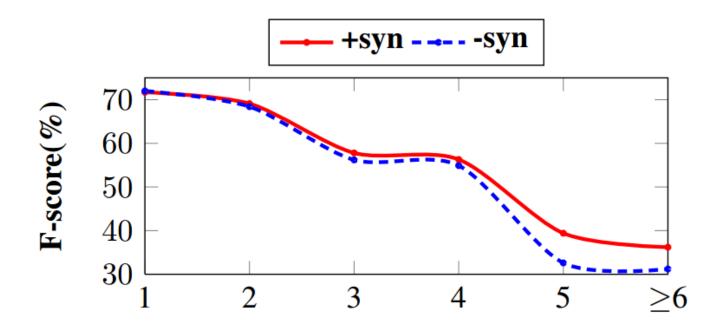
Zhang, Meishan, et al. "End-to-End Neural Relation Extraction with Global Optimization." EMNLP, 2017.

- Analysis
  - Global Learning



Zhang, Meishan, et al. "End-to-End Neural Relation Extraction with Global Optimization." EMNLP, 2017.

- Analysis
  - Syntactic Feature (Relation)

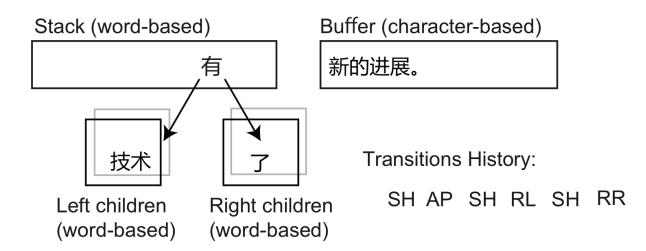


Zhang, Meishan, et al. "End-to-End Neural Relation Extraction with Global Optimization." EMNLP, 2017.

#### Model

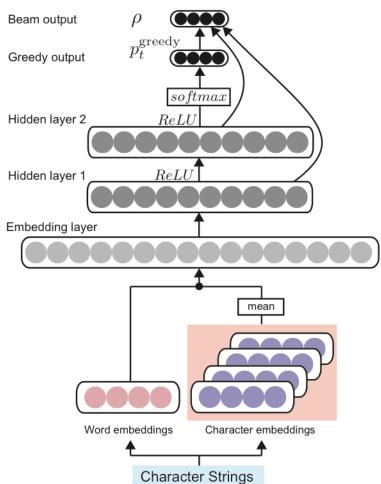
技术有了新的进展。

Technology have made new progress.

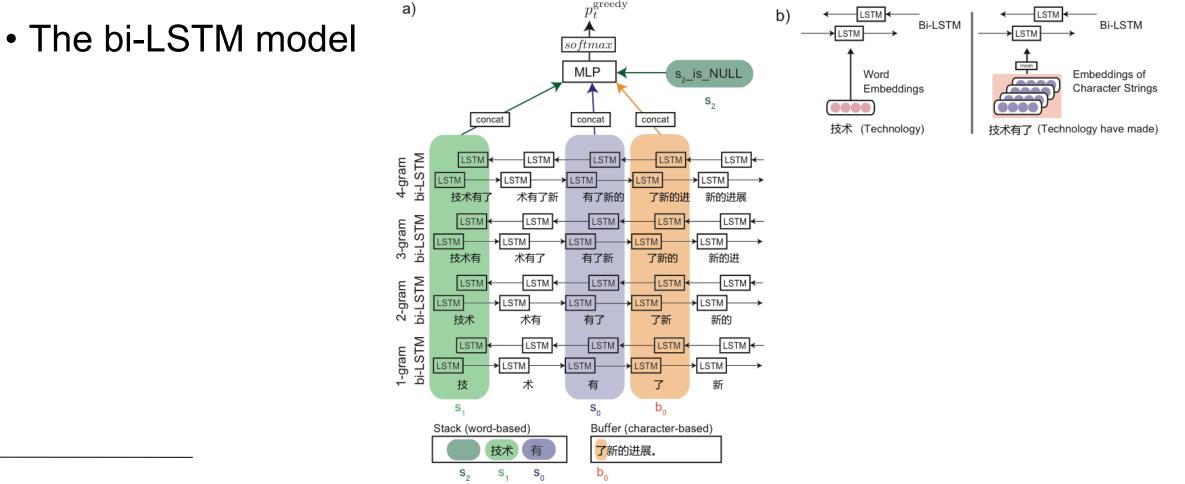


Kurita, Shuhei, Daisuke Kawahara, and Sadao Kurohashi. "Neural Joint Model for Transition-based Chinese Syntactic Analysis." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.* Vol. 1. 2017.

• Feed-forward NN model



Kurita, Shuhei, Daisuke Kawahara, and Sadao Kurohashi. "Neural Joint Model for Transition-based Chinese Syntactic Analysis." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.* Vol. 1. 2017.



Kurita, Shuhei, Daisuke Kawahara, and Sadao Kurohashi. "Neural Joint Model for Transition-based Chinese Syntactic Analysis." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*. Vol. 1. 2017.

The SegTag+Dep model

| Model           | Seg                       | POS                       | Dep                       |
|-----------------|---------------------------|---------------------------|---------------------------|
| Hatori+12       |                           | 94.33                     | 81.56                     |
| M. Zhang+14 STI |                           | 94.28                     | 81.63                     |
| M. Zhang+14 EAO |                           | 94.36                     | 81.70                     |
| Y. Zhang+15     |                           | 94.47                     | 82.01                     |
| SegTagDep(g)    | 98.24                     | 94.49                     | 80.15                     |
| SegTagDep       | 98.37                     | <b>94.83</b> <sup>‡</sup> | 81.42 <sup>‡</sup>        |
| SegTag+Dep      | <b>98.60</b> <sup>‡</sup> | 94.76 <sup>‡</sup>        | <b>82.60</b> <sup>‡</sup> |

Kurita, Shuhei, Daisuke Kawahara, and Sadao Kurohashi. "Neural Joint Model for Transition-based Chinese Syntactic Analysis." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.* Vol. 1. 2017.

• Bi-LSTM feature extraction model

| Model             | Seg   | POS   | Dep   |
|-------------------|-------|-------|-------|
| Hatori+12         | 97.75 | 94.33 | 81.56 |
| M. Zhang+14 EAG   | 97.76 | 94.36 | 81.70 |
| SegTagDep (g)     | 98.24 | 94.49 | 80.15 |
| Bi-LSTM 4feat.(g) | 97.72 | 93.12 | 79.03 |
| Bi-LSTM 8feat.(g) | 97.70 | 93.37 | 79.38 |

Kurita, Shuhei, Daisuke Kawahara, and Sadao Kurohashi. "Neural Joint Model for Transition-based Chinese Syntactic Analysis." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*. Vol. 1. 2017.

## Other instances of multitask learning

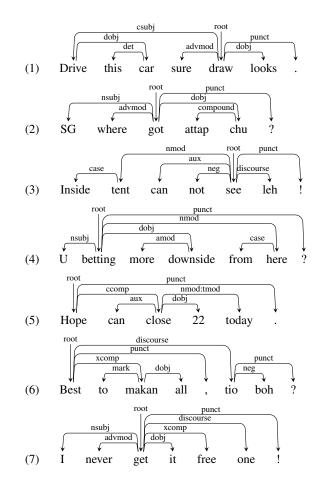
- Cross-Lingual
- Cross-Standard

- Motivation
  - **Singlish** is one of the major **creole** languages and has been increasingly used in written forms on web media.
  - Little NLP research has been focused on the creoles and poor performance on Singlish using English POS taggers and dependency parsers.

Wang, Hongmin, et al. "Universal Dependencies Parsing for Colloquial Singaporean English." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics, 2017.

- Singlish Dependency Treebank
  - Lexical Differences: Extensive vocabularies borrowed from major local languages including Malay, Tamil, and Chinese dialects such as Hokkien, Cantonese and Teochew.
  - Grammatical Variations: 5 syntactical constructions. Topic Prominence (1-3); Copula Deletion (4); NP Deletion (5); Inversion (6); Discourse Particles (3,7)
  - Universal Dependencies: Cross-lingual consistency that facilitates transfer-learning for multilingual parsers.

Wang, Hongmin, et al. "Universal Dependencies Parsing for Colloquial Singaporean English." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics, 2017.

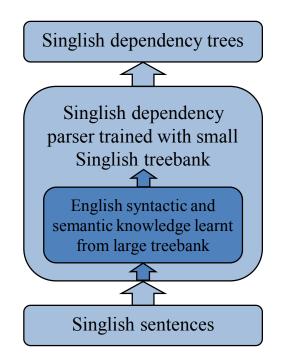


Wang, Hongmin, et al. "Universal Dependencies Parsing for Colloquial Singaporean English." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics, 2017.

- Knowledge Transfer using Neural Stacking
  - English basic syntax : state-of-the-art neural dependency parser with biaffine attentions (Dozat and Manning, 2017)
  - **Singlish specific syntax**: stacked neural layers capturing unique syntactical constructions (Chen et al., 2016)

Wang, Hongmin, et al. "Universal Dependencies Parsing for Colloquial Singaporean English." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics, 2017.

Knowledge Transfer using Neural Stacking

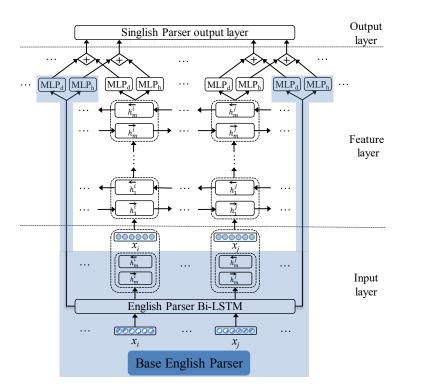


Wang, Hongmin, et al. "Universal Dependencies Parsing for Colloquial Singaporean English." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics, 2017.

- Neural Stacking Parser with Biaffine Attentions
  - Distributed lexical semantics encoded in pre-trained word embeddings trained on English and Singlish respectively
  - Feature level neural stacking by concatenations of word embedding with last bi-LSTM layer from the base model

Wang, Hongmin, et al. "Universal Dependencies Parsing for Colloquial Singaporean English." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics, 2017.

• Neural Stacking Parser with Biaffine Attentions



Wang, Hongmin, et al. "Universal Dependencies Parsing for Colloquial Singaporean English." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics, 2017.

 Significant improvement using neural stacking over the state-of-the-art dependency parser (Dozat and Manning, 2017) trained on English, Singlish and their combination.

| Trained on | System        | UAS   | LAS   |
|------------|---------------|-------|-------|
| English    | ENG-on-SIN    | 75.89 | 65.62 |
|            | Baseline      | 75.98 | 66.55 |
| Singlish   | Base-Giga100M | 77.67 | 67.23 |
| -          | Base-GloVe6B  | 78.18 | 68.51 |
|            | Base-ICE-SIN  | 79.29 | 69.27 |
| Both       | ENG-plus-SIN  | 82.43 | 75.64 |
|            | Stack-ICE-SIN | 84.47 | 77.76 |

 Table 4: Dependency parser performances

Wang, Hongmin, et al. "Universal Dependencies Parsing for Colloquial Singaporean English." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics, 2017.

• Consistent improvements over all grammar types by successful incorporation of English knowledge.

|               | Topic F | rominence | Copula Deletion |       | NP Deletion |       | Discourse Particles |       | Others |       |
|---------------|---------|-----------|-----------------|-------|-------------|-------|---------------------|-------|--------|-------|
| Sentences     | 15      |           | 19              |       | 21          |       | 51                  |       | 67     |       |
|               | UAS     | LAS       | UAS             | LAS   | UAS         | LAS   | UAS                 | LAS   | UAS    | LAS   |
| ENG-on-SIN    | 78.15   | 62.96     | 66.91           | 56.83 | 72.57       | 64.00 | 70.00               | 59.00 | 78.92  | 68.47 |
| Base-Giga100M | 77.78   | 68.52     | 71.94           | 61.15 | 76.57       | 69.14 | 85.25               | 77.25 | 73.13  | 60.63 |
| Base-ICE      | 81.48   | 72.22     | 74.82           | 63.31 | 80.00       | 73.71 | 85.25               | 77.75 | 75.56  | 64.37 |
| Stack-ICE     | 87.04   | 76.85     | 77.70           | 71.22 | 80.00       | 75.43 | 88.50               | 83.75 | 84.14  | 76.49 |

Table 6: Error analysis with respect to grammar types

Wang, Hongmin, et al. "Universal Dependencies Parsing for Colloquial Singaporean English." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics, 2017.

- Contributions
  - Annotation of a Singlish dependency treebank of 10,986 words using Universal Dependencies and POS tags.
  - Application of neural stacking for knowledge transfer to enhance POS tagging and dependency parsing for Singlish.

Wang, Hongmin, et al. "Universal Dependencies Parsing for Colloquial Singaporean English." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics, 2017.

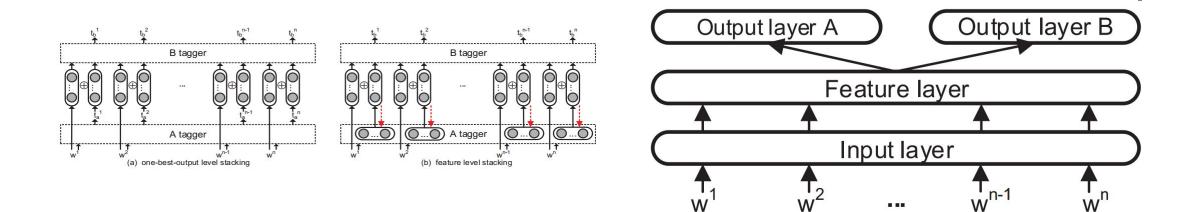
## **Cross-Standard**

- This paper empirically investigate heterogeneous annotations using neural network models, building a neural network counterpart to discrete stacking and multi-view learning, respectively, finding that neural models have their unique advantages thanks to the freedom from manual feature engineering.
- CTB standard
- PD standard

Chen, Hongshen, Yue Zhang, and Qun Liu. "Neural Network for Heterogeneous Annotations." *EMNLP*. 2016.

### **Cross-Standard**

• Neural Stacking and Neural multi-view Model



Chen, Hongshen, Yue Zhang, and Qun Liu. "Neural Network for Heterogeneous Annotations." EMNLP. 2016.