
Deep Learning with Data-Efficiency
Prof. Yike Guo FREng

 
Director , Data Science Institute

Imperial College London

Distinguished Visiting Professor
Tsinghua University  



A Traditional View of Deep Learning 



Do we really need huge data sets?



Bayes theorem:

Bayesian View of Learning 

Knowledge Driven Data Driven 



What is Data-Efficiency

Example: Two students (A and B) are preparing for the same exam.

Mock Test Questions (Teaching) Final Scores

Student A 100 95

Student B 20 95

Training Data Size Validation Performance

Algorithm A 10,000 95%

Algorithm  B 500 95%

Can we propose a new framework for data-efficient training?

same data or same model ?? 



Why Data-Efficiency (DE)
Motivation 

• Training a Deep neural network usually requires a large dataset with high-
quality annotation—the consequence of complex model 

• In many areas, lack of labels due to high cost of annotations e.g. medical 
images (expensive labelling), dynamic fluid field (time-consuming simulation) 
and etc.

• “Big data is a cure for overfitting”? Is it true?

• Is it really necessary to use such a big dataset to train neural networks? Using 
small dataset will significantly save computational resource. (e.g. XLNet 
training costs 60,000 USD!!!)



0

0.2

0.4

0.6

0.8

1

0.1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

PE
RF

O
RM

AN
CE

PROPORTION OF TRAINING SAMPLES

DATA EFFICIENCY
VALIDATION PERFORMANCE

Learning Paradigm 1 Learning Paradigm 2 Paradigm 1 > Paradigm 2

“>” means better DE

Definition of Data-Efficiency



Human Brain is a Data Efficient Learning Machine 

Change 
sensory input

sensations – predictions

Prediction error

Change 
predictions

Action Perception

改变世界 改变认知



Aim: Deep Learning with Data Efficiency
Deep Learning with Data Efficiency 



General Idea: Introducing prior knowledge into the learning paradigm is the way to  
improve data-efficiency:
• External knowledge:

1. Statistical prior
2. Zero(few)-shot learning. (Knowledge graph as prior) 
3. Data Assimilation 
4. Deep labelling : Transferring training data to generate label at the fine 

grain level
• Internal knowledge: 

1. Sequential learning. (Boosting, bagging methods)
2. Transfer Learning 
3. Deep Boosting. (Training status as prior for next training iteration)

Current Research Trends on Data-Efficiency



Part I. Deep Labelling 
Fine-grain labelling in  Precise Medical Image 

Segmentation (Data Microscoping) 



Overview

1. Medical image segmentation are usually presented as binary label maps 
which are lacking of some essential prior information (e.g. the drawing 
process of radiologists).

2. Generate/Integrate  prior information by constructing a dynamic 
annotating system for each label.

3. This enables us to extract ‘deep’ information from a single training 
sample such that the data-efficiency is improved.
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Patch-Displacement Pairs

This is where efficiency comes from. For each sample, such generative process could 
produce thousands of patch-displacement pairs from one sample which will be used for 
training the network.

Generate Patch-Displacement Pairs
Fine-grain sampling



Image-to-Dynamic Pairs

For each label, a distance function is applied to transfer a binary map into a scalar field. A gradient 
system can be constructed based on the given scalar field. Finally, an attractor is added to the gradient 
system providing a periodic solution. This step integrates the prior knowledge into each label.

Generate Dynamics for Labels
Using customized governing equations



… …

Image-Label Pairs Patch-Policy Pairs

Training with fine-grain samples

The displacement is output of the trained network, allowing an iterative annotating process.



• The method operates on a 
local patch.

• Stopping criterion is based on 
Poincaré map.

• After finite times of iteration, 
the trajectory will converge to 
the boundary of ROI.

Inference stage
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Part II. Transfer Learning 

From Partial Annotations for Whole Brain Segmentation



Anatomical Prior in Partial Annotations

1. Fine segmentations for anatomical structures from the 
medical image can be difficult to acquire. There are not 
enough of them to train a robust machine-learning model.

2. Partial annotations are easier to generate (e.g. manual or 
semi-automatic) and the availability is much better. 

3. The anatomical prior learnt from the partial annotation can be 
transferred for more detailed segmentation.



Gain Prior Knowledge via Partial Annoation 

Partial annotation refers to segmentation that only covers part of the brain 
structures. In our case, it refers to segmentation of 15 sub-cortical structures 
automatically generated by FSL. 

Full annotation refers to segmentation of whole brain structures manually 
annotated by human experts, which is a superset of partial annotation and 
consists of 138 structures.

• Stage one: learning partial 
annotation with UNET.

• Stage two: jointly learning 
whole and partial 
segmentation from features 
leant in stage one.



Neural Network for Multi-task Training 

The multi-output network (MO-Net) where encoder and both 
decoders are loaded with the pre-trained parameters. Multi-
output design encourages the encoder to learn shared features 
for partial segmentation and full segmentation.



Results

Visual inspection of segmentation result
Box-plot of Dice scores of models with 
and without incorporating anatomical 

prior

Ground truth of full (a) and partial (d) brain segmentation from the expert, 
full (b) and partial (e) brain segmentation from MO-Net
 full (c) segmentation from fine-tuned U-Net, and sub-cortical (f)  segmentation from FSL. 
Red arrows indict regions where MO-Net looks consistent with manual annotations and 
outperforms other methods.



Part III. Greedy Block-wise Training
For Brain Tumors Segmentation



Proposed Network

• The proposed architecture is a sequence of computational blocks containing a number of 
convolutional layers in which each block provides its successive block with a coarser 
segmentation map as a reference. 



Neural Network for Block-wise Training 

• Before training stage, the proposed method requires a data transformation step which 
converts each label into different resolutions for the training of each blocks. 

• Then, the proposed training scheme will be adopted to train each block according to a 
feedforward order. In so doing, each trained block is able to provide its successive block with 
a meaningful and coarse segmentation results, which gradually increases training difficulty 
instead of starting with the hardest samples.



Results

• We trained our network on 
the training sets of BRATS 
2015 and BRATS 2013 
respectively. 

• We report the Dice metric 
and sensitivity on three 
tasks of brain tumour 
segmentation. They are: 
• the whole tumour (WT) 

region
•  the core tumour (CT) 

region 
• the enhancing tumour 

(ET) region



Part IV. Deep Boosting
Sequential Generation of Efficient Training Samples



What is Boosting

1. A boosting algorithm is usually an iterative process that 
progressively learn a strong classifier. At each iteration, an 
auxiliary classifier will be created using the training samples 
which is re-weighted according to the classification results of 
last iteration. Finally, the auxiliary classifiers are ensembled as 
a strong classifier.

2. The re-weighted training samples of current training iteration are 
the prior for the next training iteration.



What is Boosting
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What is Deep Boosting



Learning the intrinsic data 
structure through manifold 
learning:
• Kernel tricks

• PCA, ICA, LDA, t-SNE …

• Auto-encoder

…

Manifold learning

Raw Data Data structure

High-dimensional manifold Low-dimensional latent space

Efficient Data Representation



Proposed Framework 



Framework

1. The preparation stage represents the training of a variational auto-
encoder (VAE) using unannotated samples. 

2. In the main stage, the decoder (generator) as well as its latent space 
are used for mining hard training samples according to the error 
information propagated backward via the target model and decoder 
(generator). 

3. Each proposed sample will be annotated by the labeling tool



Two Sampling Schemes in Latent Space

When there is no labelling tools 
available.  We can use the nearest 

neighbours to train the target model.

When there is a labelling tool 
available.  We can use the 

interpolated point to train the target 
model.   



Deep neural network

Raw data …

latent representation 

Adaptive training batches

Efficient training set

Framework

Active sampling
for specific task

Deep boosting engine



Results

Deep boosting Standard training

• Deep boosting (DB) progressively 
extend the training data, which 
means, at certain iteration, DB 
could achieve same loss with less 
size of training samples.

• With more training samples coming, 
the loss maintains the decreasing 
trend which demonstrates the 
robustness of DB.



Dataset --- MNIST, Cifar10, IVUS  

MNIST Cifar10 IVUS 



Visualization on the MNIST
• a couple of initial 

sampling point are 
evolved using rules of 
sampling by nearest 
neighbour 

• 6 typical trajectories are 
selected to be visualized 
in the 2D MNIST latent 
space.

• It can be observed that 
trajectories like a, b, c, d 
are the most desired 
exploration strategy as 
they walk around the 
boundary between 
classes, where 



Results

We progressively increased the size of train set and reported the accuracy and 
means square error (MSE) on the independent test sets respectively.



Data Efficiency Will Not Compromise Performance 



• Our efficient learning algorithms provide a small-sample 
solution for image learning system.

• The cost of medical imaging analysis can be reduced 
significantly.

• The proposed frameworks can be easily generalized to other 
areas where high-quality annotation is difficult to obtain, e.g. 
material optimization, drug discovery and medical text 
analysis (HER).

• Hope the similar approach can be developed in NLP

Conclusion


