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Do we really need huge data sets?



Bayesian View of Learning
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What is Data-Efficiency

Example: Two students (A and B) are preparing for the same exam.

_ Mock Test Questions (Teaching) M

Student A 100 95
Student B 20 95

Can we propose a new framework for data-efficient training?

_ Training Data Size Validation Performance

Algorithm A 10,000 95%
Algorithm B 500 95%
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Why Data-Efficiency (DE)

Motivation

» Training a Deep neural network usually requires a large dataset with high-
quality annotation—the consequence of complex model

* In many areas, lack of labels due to high cost of annotations e.g. medical
iImages (expensive labelling), dynamic fluid field (time-consuming simulation)
and etc.

« “Big data is a cure for overfitting™? Is it true?

 |Is it really necessary to use such a big dataset to train neural networks? Using
small dataset will significantly save computational resource. (e.g. XLNet
training costs 60,000 USD!!!)
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Definition of Data-Efficiency

 Data efficiency can be considered as the property of a given learning
paradigm. It describes how efficient the paradigm could use training samples
to achieve a performance target.

« Namely, given a performance metric m (e.g. accuracy), data-efficiency is to find
the minimum size s of training data used to achieve m.
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Human Brain is a Data Efficient Learning Machine

Prediction error
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Current Research Trends on Data-Efficiency

General Idea: Introducing prior knowledge into the learning paradigm is the way to
improve data-efficiency:
« External knowledge:

1. Statistical prior

2. Zero(few)-shot learning. (Knowledge graph as prior)

3. Data Assimilation

4. Deep labelling : Transferring training data to generate label at the fine
grain level

* Internal knowledge:
1. Sequential learning. (Boosting, bagging methods)
2. Transfer Learning
3. Deep Boosting. (Training status as prior for next training iteration)



Part |. Deep Labelling

Fine-grain labelling in Precise Medical Image
Segmentation (Data Microscoping)
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Overview

1. Medical image segmentation are usually presented as binary label maps
which are lacking of some essential prior information (e.g. the drawing
process of radiologists).

2. Generate/lntegrate prior information by constructing a dynamic
annotating system for each label.

3. This enables us to extract ‘deep’ information from a single training
sample such that the data-efficiency is improved.
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Framework
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Generate Patch-Displacement Pairs
Fine-grain sampling

(6%, 8y)

AR BSERERI VHFFFFFP PP AR
AN Vbbb FPr R rry
AL LR SRR RN VIFFFPFPEFF
NN RRRY Ry \VPFrZAE Y
\\‘\“- ::: \“ "”‘”’ x’ y
\\\\\ ; }““\tfil"”
\\\\\ *'-o--..-“\ ",‘-,,
\\\\ ’Ir l-'s\Q" e
“-If! ty I’-o-\‘t P
-q.a-"f*.\\f!',\* ‘:1*‘-
....'t{ My ‘”,,....
, (6x, 8y)
Fr L - - r
sty eh..:;;dj;; ::::
:rtt!l\\-‘,l’: \\\\\\\
Yo farwwritbresg ‘“:,‘, MRS S TN
PR LR R LS il N R
::xtti”‘\\\i RN RNy
A A AR Ny
A A vy c?x 5
AR TR INNNNY Oy
Xp
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This is where efficiency comes from. For each sample, such generative process could
produce thousands of patch-displacement pairs from one sample which will be used for
training the network.
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Generate Dynamics for Labels

Using customized governing equations

Gradient
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For each label, a distance function is applied to transfer a binary map into a scalar field. A gradient
system can be constructed based on the given scalar field. Finally, an attractor is added to the gradient
system providing a periodic solution. This step integrates the prior knowledge into each label.
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Training with fine-grain samples

Image-Label Pairs Patch-Policy Pairs
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The displacement is output of the trained network, allowing an iterative annotating process.
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Inference stage

Patch Extracted From Image

| * The method operates on a
. local patch.

| « Stopping criterion is based on
e Poincaré map.
« After finite times of iteration,

the trajectory will converge to
Give displacement 2DD(I;§F'E’§;;"EM the bOU ndary Of ROI

to the agent e

256x256 Image
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Results

DICE SCORE
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Part Il. Transfer Learning

From Partial Annotations for Whole Brain Segmentation

Imperial College



Anatomical Prior in Partial Annotations

1.

Fine segmentations for anatomical structures from the
medical image can be difficult to acquire. There are not
enough of them to train a robust machine-learning model.

Partial annotations are easier to generate (e.g. manual or
semi-automatic) and the availability is much better.

The anatomical prior learnt from the partial annotation can be
transferred for more detailed segmentation.



Gain Prior Knowledge via Partial Annoation
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Stage one: learning partial
annotation with UNET.

Stage two: jointly learning
whole and partial
segmentation from features
leant in stage one.

Partial annotation refers to segmentation that only covers part of the brain
structures. In our case, it refers to segmentation of 15 sub-cortical structures

automatically generated by FSL.

Full annotation refers to segmentation of whole brain structures manually
ammotated by human experts, which is a superset of partial annotation and
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Neural Network for Multi-task Training

Stage 2: Training jointly with partial and full annotations
Stage 1: Training with partial annotations

HEE

®» 2X2 Up-conv ®» 3X3 Conv+BN+LRelLU
Concat Maxpool

The multi-output network (MO-Net) where encoder and both
decoders are loaded with the pre-trained parameters. Multi-
output design encourages the encoder to learn shared features
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Results

Box-plot of Dice scores of models with
and without incorporating anatomical Visual inspection of segmentation result
prior

Methods
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Ground truth of full (a) and partial (d) brain segmentation from the expert,
full (b) and partial (€) brain segmentation from MO-Net
full (c) segmentation from fine-tuned U-Net, and sub-cortical (f) segmentation from FSL.

Red arrows indict regions where MO-Net looks consistent with manual annotations and
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Part Ill. Greedy Block-wise Training

For Brain Tumors Segmentation
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Proposed Network
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* The proposed architecture is a sequence of computational blocks containing a number of

convolutional layers in which each block provides its successive block with a coarser
segmentation map as a reference.



Neural Network for Block-wise Training
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Before training stage, the proposed method requires a data transformation step which
converts each label into different resolutions for the training of each blocks.

Then, the proposed training scheme will be adopted to train each block according to a
feedforward order. In so doing, each trained block is able to provide its successive block with

a meaningful and coarse segmentation results, which gradually increases training difficulty
instead of starting with the hardest samples.



Results

Table 1: Comparison of brain tumour segmentation performance on BRATS13.

Methodology Dice Sensitivity
WT |[CT |[ET |WT |CT |ET .
Havei et al.[13] 0.88 [0.79 [0.73 [0.87 [0.79 |0.80 e We tV‘alV\ed our V\etWOV‘I{ on
Urban et al. |14 0.87 [0.77 [0.73 [0.92 |0.79 |0.70 !
Peréiva el a]_|1r=]| 0.8% [0.83 |0.77 [0.89 |0.83 |01 the training sets of BRATS
T. HNL et al. [16] |0.89 [0.79 [0.74 [0.00 |0.89 [0.93 2015 and BRATS 2013
Proposed Method [0.91 (080 [0.71 [0.95 (0.90 [0.92 V@SPeCtive{y-
« We report the Dice metric
Table 2: Comparison of brain tumour segmentation performance on BRATS15. aV\d S@V\Sl.tl'Vl'ty on tb\‘"e@
Methodology Dice Sensitivity .
WT |CT JET [WT JCT |ET tasks of brain tumour
Chang et al. [17] [0.87 [0.81 [0.72 | - - segmemtatiom. T[,\ey arve:
Deep Medic [18] 0.896 (0.754 |0.T18 |0.903 |0.73 |0.73
DMRes [18] 0.896 [0.763 |0.724 [0.92 [0.754 |0.763 * the whole tumour (WT)
T. HNL et al. [16] [0.88 |0.82 (0.73 |0.91 |0.76 |[0.78 V@gl'OV\.
Proposed Method [0.89 (.80 [0.73 |0.94 [0.81 |(0.80 . tb\e core tumour (C-r)
region

« the enhancing tumour
(ET) region



Part IVV. Deep Boosting

Sequential Generation of Efficient Training Samples
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What is Boosting

1. A boosting algorithm is usually an iterative process that
progressively learn a strong classifier. At each iteration, an
auxiliary classifier will be created using the training samples
which is re-weighted according to the classification results of
last iteration. Finally, the auxiliary classifiers are ensembled as
a strong classifier.

2. The re-weighted training samples of current training iteration are
the prior for the next training iteration.

Imperial College



What is Boosting

Classifier Classifier Classifier
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What is Deep Boosting

1. Real-world data is distributed in high-dimensional space but
concentrate on manifolds M (contains redundant information).

2. Learn a low-dimensional data structure D for efficient
representation.

3. Select or generate the most ‘efficient’ samples from D to be
annotated and then used as training data.

Imperial College



Efficient Data Representation

Learning the intrinsic data
structure through manifold

s

Raw Data Data structure learning:
I I * Kernel tricks
High-dimensional manifold Low-dimensional latent space « PCA, ICA, LDA, t-SNE ...
" * Auto-encoder
Po
M c R? >
o D c R™




Proposed Framework

Encoder

Latent space
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Framework

1. The preparation stage represents the training of a variational auto-
encoder (VAE) using unannotated samples.

2. Inthe main stage, the decoder (generator) as well as its latent space
are used for mining hard training samples according to the error

information propagated backward via the target model and decoder
(generator).

3. Each proposed sample will be annotated by the labeling tool

Imperial College



Two Sampling Schemes in Latent Space

:\@

SNN S]

When there is a labelling tool
available. We can use the
interpolated point to train the target
model.

When there is no labelling tools
available. We can use the nearest
neighbours to train the target model.



Framework
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Raw data —»
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latent representation

Active sampling
for specific task
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Deep boosting engine
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Deep neural network

Adaptive training batches
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Results

Training Loss Moving Average
 Deep boosting (DB) progressively
s00 extend the training data, which
means, at certain iteration, DB
could achieve same loss with less
300 size of training samples.

400

200

*  With more training samples coming,

the loss maintains the decreasing
. trend which demonstrates the
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
ftesiinns robustness of DB.

=== Deep boosting === Standard training
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Dataset --- MNIST, Cifar10, IVUS
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Visualization on the MNIST

* acouple of initial
- sampling point are
a AAVNAVANAN evolved using rules of
b n ﬂ H sampling by nearest

neighbour

C 2 * 6 typical trajectories are

selected to be visualized

i HBEBRBBBEEBEE in the 2D MNIST latent

space.

EEE * It can be observed that

trajectories like a, b, ¢, d
f are the most desired

exploration strategy as

2D latent space Sampling snapshots they walk around the
boundary between

classes, where

Imperial College

B

B0 B AYVS] B



Results

IVUs
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We progressively increased the size of train set and reported the accuracy and
means square error (MSE) on the independent test sets respectively.
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Data Efficiency Will Not Compromise Performance

2nd Place
»

2019 MICCAI BraTs Challenge
(Survival Task)
Chengliang Dai, et al. “Automatic Brain Tumour
Segmentation and Biophysics-Guided Survival Prediction™




Conclusion

 Our efficient learning algorithms provide a small-sample
solution for image learning system.

* The cost of medical imaging analysis can be reduced
significantly.

* The proposed frameworks can be easily generalized to other
areas where high-quality annotation is difficult to obtain, e.g.
material optimization, drug discovery and medical text
analysis (HER).

* Hope the similar approach can be developed in NLP



