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Abstract. This paper proposes a multi-classifier combination strategy
to improve translation error detection performance for statistical ma-
chine translation (SMT). Specifically, two different classifiers – Maxi-
mum Entropy (MaxEnt) and Support Vector Machine (SVM) – over
different features perform a binary classification and export classifica-
tion probabilities for either class. Then a probability product rule based
multi-classifier combination strategy is employed to fuse these two clas-
sifiers to decrease the classification error rate (CER). Three typical word
posterior probabilities (WPP) and three linguistic features as well as
their combinations are used in the experiments conducted on Chinese-
to-English NIST data sets. Experimental results show that the combi-
nation of multiple classifiers reduce the CER by relative 0.15%, 0.94%,
and 1.52% compared to the SVM classifier, and relative 1.73%, 1.72%,
2.02% compared to the MaxEnt classifier over three different feature
combinations.

Keywords: translation error detection, binary classification, multi-classifier
combination

1 Introduction

In recent years, a number of different types of SMT methods have been proposed,
such as the phrase-based, hierarchical phrased-based, and syntax-based models
etc., which significantly improve the translation quality. Meanwhile, a lot of
effort has been put to apply SMT systems to practical use, e.g. the software
localization industry [1–3]. However, the translation quality cannot fully satisfy
the actual demand of industry yet. For example, the ungrammatical errors and
disordered words in the translation often increase human cost. Therefore, high-
quality automatic translation error detection or word-level confidence estimation
is necessary to further improve the working efficiency of the post-editors or
translators in the localization industry.

Typically, most translation error detection methods utilize system-based fea-
tures (e.g. WPP) combining with extra knowledge such as linguistic features to
decrease the classification error rate [4–9]. As to the system-based features, a
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number of different algorithms to calculate the WPP were proposed based on
the N -best list or word lattice, and had been applied to SMT translation quality
estimation. Afterwards, some researchers try to introduce more useful knowledge
sources such as syntactic and semantic features to further improve the error de-
tection capability [8, 10, 11]. However, these features are not that easy to extract
due to their complexity, low generalization capability, and dependency on spe-
cific languages etc. Hence, currently the system-based features such as WPP and
lexicalized features (e.g. word and part-of-speech (POS)) still play the main role
in the error detection task or the confidence estimation task.

Generally, translation error detection can be regarded as a binary classifi-
cation task. Thus, the accuracy of the classifier also plays an important role in
terms of improving the prediction capability besides adding new features and
extra knowledge. This paper mainly focuses on the investigation of different
classifiers, and presents an effective and straightforward strategy of combining
two different classifiers to improve the classification performance. Firstly, we
introduce the features used in our task, which are three typical WPP system-
based features and three linguistic features, then employ two different classifiers,
namely the MaxEnt classifier and SVM classifier to perform the classification
task respectively. Finally, we carry out a combination operation – multiplication
of the classification probabilities – to obtain the final result. Experiments are
conducted on NIST Chinese-to-English translation task, and the results show
that the combined method outperforms either individual classifier used in our
task in terms of the CER.

The rest of the paper is organized as follows: Section 2 briefs the related
work as to the error detection task. In Section 3, three typical WPP and three
linguistic features are described. Section 4 firstly describes the MaxEnt and SVM
classifiers used in our task, and then the multi-classifier strategy and feature
representation are detailed. Experimental settings, implementation and analysis
are reported in Section 5. The final section concludes and gives avenues for future
work.

2 Related Work

The question of translation confidence estimation has attracted a number of re-
searcher due to its importance in promoting SMT application. In 2004, Blatz et
al. improved the basic confidence estimation method by combining the neural
network and a naive Bayes classifier to predict the word-level and the sentence-
level translation errors [6]. The features they used include WPP calculated from
the N -best list, translation model-based features, semantic feature extracted
from the WordNet, as well as simple syntactic features. Experimental results
show that all among these features, WPP is more effective with strong general-
ization capability than linguistic features.

Ueffing and Ney exhaustively explore various kinds of WPP features to per-
form confidence measures, and proposed different WPP algorithms to verify the
effectiveness in confidence estimation task [5, 7]. In their task, the words in the
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generated target sentence can be tagged as correct or false to facilitate post-
editing or work in an interactive translation environment. Their experiments
conducted on different data sets show that different WPP algorithms perform
differently, but basically each can reduce the CER. Furthermore, the combina-
tion of different features can perform better than any individual features.

Specia et al. have done a lot of work with regard to the confidence estimation
in the computer-aided translation field [10, 11]. They categorize translations into
“bad” or “good” classes based on sentence-level binary scores of the post-edition
MT fragments. The features used are called “black-box” features, which can be
extracted from any MT systems only if the information from the input (source)
and translation (target) sentences are given, such as source and target sentence
lengths and their ratios, the edit distance between the source sentence and sen-
tences in the corpus used to train the SMT system. Their work contributed
significantly to SMT translation confidence estimation research and application.

Xiong et al. proposed an MaxEnt classifier based error detection method
to predict translation errors (each word is tagged as correct or incorrect) by
integrating a WPP feature, a syntactic feature extracted from LG parser and
some lexical features [8]. The experimental results show that linguistic features
can reduce CER when used alone, and it outperforms WPP. Moreover, linguistic
features can further provide complementary information when combined with
WPP, which collectively reduce the classification error rate.

In 2011, Bach et al. classified translation errors into four categories by ex-
tracting more richer set of source-side information features, and combined sen-
tence -level and word-level features to estimate translation quality. They predict
error types of each word in the MT output with a confidence score, then extend
it to the sentence level, and finally apply it to N -best list re-ranking task to
improve MT quality [9].

On the basis of previous work, this paper mainly focuses on how to signif-
icantly improve the classification performance by using different kinds of clas-
sifiers and combining multiple classifiers over a set of effective features. Specif-
ically, this paper 1) verifies the performance of various classifiers, namely the
MaxEnt classifier and the SVM classifier on the translation error detection task;
2) presents a probability product combination strategy to fuse two classifier to
obtain better results.

3 Features

3.1 WPP Feature

WPP is served as a major and effective confidence estimation feature both in
speech recognition and in SMT post-processing. In terms of SMT, WPP refers
to the probability of a word occurring in the hypothesis given a source input.
Generally speaking, the underlying idea is that if the posterior probability of a
word occurring in a hypothesis is high, then the chance that it is believed to be
correct is big correspondingly. Based on this consideration, it is reasonable that
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the more useful information considered in the WPP algorithm, the better the
performance would achieve.

The general mathematical description of WPP is as:
For an SMT system S, given the input sentence fJ

1 , and the exported N -best

list en,Inn,1 , where n = 1, . . . , N , en refers to the nth hypothesis with the probability

p(fJ
1 , e

n,In
n,1 ), then the WPP in the error detection task can be represented as

calculating the probability pi(e|fJ
1 , e

I
1) of the word e at position i in the 1-best

hypothesis of the N -best list as in (1),

pi(e|fJ
1 , e

I
1) =

∑N
n=1 f(a, en,i, e) · p(fJ

1 , e
n,In
n,1 )

∑N
n=1 p(f

J
1 , e

n,In
n,1 )

(1)

where a is a hidden variable which indicates an alignment measure; f(a, en,i, e)
is a binary sign function as in (2),

f(a, en,i, e) =

{
1 en,i = e

0 otherwise
(2)

It can be seen from the description of N -best based WPP algorithm that
the posterior probability of a word in a hypothesis can be worked out according
to the sentence-level posterior probabilities of hypotheses in the N -best list.
The vital information to be considered is the position of the word e which is
determined by the alignment measure between the 1-best hypothesis and the
rest of the N -best list.

Here we introduces three typical WPP methods to illustrate their different
influence on the error detection performance over different kinds of classifiers.

3.1.1 Fixed Position based WPP

The basic idea of fixed position-based WPP is that given an input fJ
1 , the poste-

rior probability of a word e at position i in the hypothesis eI1 can be calculated by
summing the posterior probabilities of all sentences in the N -best list containing
target word e at target position i, which is as in (3),

pi(e|fJ
1 , e

I
1) =

∑N
n=1 δ(en,i, e) · p(fJ

1 , e
n,In
n,1 )

∑
e′
∑N

n=1 δ(en,i, e
′) · p(fJ

1 , e
n,In
n,1 )

(3)

where δ(x, y) is the Kronecker function as in (4),

δ(x, y) =

{
1 x = y

0 otherwise
(4)

This method only uses the original position information of each word without
any extra alignment measure between the 1-best and any other hypotheses.
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3.1.2 Flexible Position based WPP

The potential problem of fixed position based WPP is that generally the hy-
potheses in the N -best list have different length that will make the same word
occur at different positions so that the WPP would have a large error com-
pared to the real probability distribution. Naturally the intuition to improve
this method is to make the position flexible, e.g. using a sliding window.

The basic idea of sliding window is to consider the words around the position
i, i.e., the context. Let the window size be t, then the sliding window at position
i can be denoted as i± t. If the target word e appears inside the window, then
we regard it occurring at position i and sum up the probability of the current
hypothesis, which is formulated as in (5),

pi,t(e|fJ
1 , e

I
1) =

i+t∑

k=i−t

pk(e|fJ
1 , e

I
1) (5)

where pk(e|fJ
1 , e

I
1) is as illustrated in Eq. (3).

3.1.3 Word Alignment based WPP

The sliding window based method needs to choose a proper window size which
can only be determined by experiments. Thus, another straightforward way to
improve the fixed position method is to perform the word alignment between
the 1-best hypothesis and the rest of hypotheses in the N -best list, i.e., align the
rest of hypotheses against the 1-best hypothesis.

Specifically, let L(eI1, e
n,In
n,1 ) be the Levenshtein alignment between en1 and

other hypotheses, then the WPP of the word e at position i is as in (6):

plev(e|fJ
1 , e

I
1) =

plev(e, f
J
1 , e

I
1)∑

e′ plev(e
′, fJ

1 , e
I
1)

(6)

where

plev(e, f
J
1 , e

I
1) =

N∑
n=1

δ(e, Li(e
I
1, e

n,In
n,1 )) · p(fJ

1 , e
n,In
n,1 ) (7)

In Eq. (7), p(fJ
1 , e

n,In
n,1 ) is the posterior probability of each hypothesis in the

N -best list, which is given by the SMT system. δ(x, y) is the Kronecker function
as in Eq. (4).

3.2 Linguistic Features

3.2.1 Syntactic Features

Xiong et al. extracted syntactical feature by checking whether a word is con-
nected with other words from the output of the LG parser. When the parser
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fails to parse the entire sentence, it ignores one word each time until it finds
linkages for remaining words. After parsing, those ignored words which are not
connected to any other words to be called null-linked words. These null-linked
words are prone to be syntactically incorrect and the linked words are prone to
be syntactically correct, then a binary syntactic feature for a word according to
its links can be defined as in (8),

link(e) =

{
yes e has links with other words

no otherwise
(8)

Refer to detailed description in [8].

3.3 Lexical Features

Lexical features such as the word itself and the POS [12] are common features
used in NLP tasks. In this paper, we also utilize the word/pos with its context
(e.g. the previous two words/pos and next two words/pos) to form a feature
vector as follows,

– word: (w−2, w−1, w, w1, w2)
– pos: (pos−2, pos−1, pos, pos1, pos2)

4 Classifiers and Feature Representation

In this paper, the translation error detection is regarded as a classification task.
In this section, we introduce two kinds of classifiers – MaxEnt and SVM, and then
come up with a multi-classifier combination strategy to perform our translation
error detection task.

Our translation error detection is a binary classification task that annotates
a word e of the translation hypothesis eI1 as “correct” if it is translated correctly,
or “incorrect” if it is a wrong translation. Therefore, the label set for the clas-
sification task can be denoted as y = {c, i}, where y indicates the label set, c
stands for class “correct” and i represents class “incorrect”.

4.1 Maximum Entropy Classifier

The MaxEnt model is the most commonly-used classifier in NLP tasks, which is
a generalization of the model used by the naive Bayes classifier. The basic idea
of MaxEnt model is to build a consistent model for all known factors without
considering any unknown factors. A remarkable characteristic of the MaxEnt
classifier is that features are not necessarily required independent. In doing so,
features can be arbitrarily added into the model. Denote the binary classification
samples as (x1, y1), . . . , (xn, yn) (xi represents the feature vector, yi ∈ {c, i}) (c
and i stand for correct and incorrect labels respectively in our task), then as in
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literature [8], the MaxEnt classifier for a word e in a hypothesis can be formulated
as in (9),

p(y|x) = exp(
∑

i(λifi(x, y)))∑
y(exp(

∑
i(λifi(x, y))))

(9)

where fi is a feature function, λi is the weight of fi, y is the class label, and x
is the feature vector.

4.2 SVM Classifier

SVM has been widely and successfully used in many NLP tasks, such as word
sense disambiguation, name entity recognition etc. The basic principle of SVM
is to find an optimal hyperplane to make the distance maximum between two
classes. The classification task can be defined as in (10),

g(x) = sign[

n∑
1

aiyiK(xi, x) + b] (10)

where g(x) is the optimal classification hyperplane, K(xi, x) is the kernel func-
tion.

4.3 Multi-classifier Combination

Multiple classifiers combination method has been applied in many NLP tasks,
such as word sense disambiguation etc. Most of these applications have shown a
considerable improvement over the performance of individual classifiers. There-
fore, it leads us to consider implementing such a multiple classifier combination
strategy for the translation error detection task as well.

In general, different types of classifiers would reflect different characteristics
in the classification results, so that using classifier combination techniques can
potentially achieve a better classification accuracy based on the assumption that
the errors made by each of the classifiers are not identical, and if the combination
strategy is appropriate, then the outcome might correct some errors.

Several effective ways of classifier combination techniques have been studied,
such as probability distribution based method, vote-based method, rank-based
method, linear/weighted linear combination method etc. [13–15]. Regarding this
task, considering that we only have two different classifiers, a straightforward
strategy – probability product rule – is presented to combine the outputs of two
individual classifiers to achieve better results.

The algorithm of the probability product for our translation error detection
task can be formalized as:

Assume the task is a binary classification, given the classifier set
C = {C1, . . . , Cn} and the class set c = {c1, c2}, for a word sequence S =
{w1, . . . , wm} in which each word wi need to be tagged as c1 or c2, if the outputs
for a word w from each individual classifier Ci can be denoted as Oi

w = {pic1 , pic2},
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in which pic1 indicates the probability that the word w is tagged as c1 by the
classifier Ci, and pic2 is the probability that w is tagged as c2 by the classifier
Ci, conditioned by pic1 + pic2 = 1, then the probability product algorithm for the
classifier combination can be formulated as in (11),

cw = max{
n∏

i=1

pic1 ,

n∏

i=1

pic2} (11)

where cw indicates the predicted class for the word w. In our task, n = 2.

4.4 Feature Vector Representation

As described in previous sections, in our translation error detection task, we have
four kinds of features: wpp, pos, word and link (c.f. Section 3). In this section,
we introduce how to construct a normalized and unified feature vector format
for the MaxEnt and SVM classifiers.

Generally in the NLP classification task, context information is usually to be
considered in the process of feature extraction. Therefore, in our task, to build
a feature vector for a word e, we look at 2 words before and 2 words after the
current word position as well. Thus, the feature vector x that includes four kinds
of features can be denoted as,

x = < wpp−2, wpp−1, wpp, wpp1, wpp2, pos−2, pos−1,

pos, pos1, pos2, word−2, word−1, word, word1,

word2, link−2, link−1, link, link1, link2 >

As to the individual classifiers, we use the MaxEnt toolkit 3 as our MaxEnt
classifier, and use LibSVM 4 as our SVM classifier [16] respectively.

5 Experiments and Analysis

5.1 Chinese-English SMT System

We utilize Moses [17] to provide 10, 000-best list with translation direction from
Chinese to English. The training data consists of 3,397,538 pairs of sentences
(including Hong Kong news, FBIS, ISI Chinese-English Network Data and Xin-
Hua news etc.). The language model is five-gram built on the English part of
the bilingual corpus and Xinhua part of the English Gigaword.

The development set for SMT training is the current set of NIST MT 2006
(1,664 source sentences) and the test sets are NIST MT-05 (1,082 sentences)
and NIST MT-08 (1,357 sentences). Each source sentence has four references.
During the decoding process, the SMT system exports 10, 000-best hypotheses
for each source sentence, i.e., N = 10, 000.

Performance of SMT systems on two test sets is shown in Table 1 in terms
of BLEU4 and other metrics.
3 http://homepages.inf.ed.ac.uk/s0450736/maxenttoolkit.html.
4 Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Table 1. SMT performance and the ratio of correct words (RCW)

dataset BLEU4(%) WER(%) TER(%) RCW(%)

NIST MT 2008 25.97 69.79 63.56 37.99
NIST MT 2005 33.17 69.50 61.40 41.59

5.2 Experimental Settings for Translation Error Detection Task

Development and test sets: in the error detection task, we use NIST MT-08
as the development set to tune the classifiers, and NIST MT-05 as the test set
to evaluate the classification performance.
Data annotation: we use the WER metric in TER toolkit [18] to determine
the true labels for the words in the development set and the test set. Specifically,
we firstly perform the minimum edit distance alignment between the hypothesis
and the four references, and then select the one with minimum WER score as
the final reference to tag the hypothesis. That is, a word e in the hypothesis is
tagged as c if it is the same as that in the reference, otherwise tag it as i.

There are 14,658 correct words and 23,929 incorrect words in the 1-best
hypothesis of MT-08 set (37.99% ratio of correct words, RCW), 15,179 correct
words and 21,318 incorrect words in the 1-best hypothesis of MT-05 set (41.59%
RCW). See RCW in Table 1.

Evaluation Metrics: the commonly-used evaluation metrics for the clas-
sification task includes CER (classification error rate), precision, recall and F
measure. In our translation error detection task, we use CER as the main eval-
uation metric to evaluate the system performance that is defined as in (12),

CER =
#of wrongly tagged words

#of total words
(12)

Since the RCW is less than 50% (41.59%), i.e., the number of incorrect words
is more than correct words, it is reasonable to use the RCW as the baseline of
CER to examine the classification performance of classifiers.

We also use F measure, Precision and Recall as the auxiliary evaluation
metrics to evaluate some performance of features and classifiers. See definitions
in [8].

5.3 Classification Experiments for Individual Classifiers

Results of different features and feature combinations over two different individ-
ual classifiers are shown in Table 2.

WPP Dir represents the fixed position-based WPP, WPP Win represents
the flexible position-based WPP with the window size 2, and WPP Lev repre-
sents word alignment-based WPP. com1 represents the feature combination of
WPP Dir + Word + Pos + Link, com2 stands for the feature combination of
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Table 2. Results of two individual classifiers for translation error detection

MaxEnt SVM
Feature CER(%) P(%) R(%) F(%) CER(%) P(%) R(%) F(%)

Baseline 41.59 – – – 41.59 – – –

WPP Dir 40.48 63.44 72.46 67.65 37.64 61.19 97.20 75.11
WPP Win 39.70 63.82 73.95 68.51 37.47 61.31 97.17 75.18
WPP Lev 40.12 60.24 92.07 72.83 37.37 61.37 97.24 75.25

word 39.11 64.20 76.67 69.04 37.68 64.06 80.84 71.48
pos 39.50 61.52 86.46 71.89 39.12 62.10 84.75 73.68
link 40.89 59.55 93.55 72.77 37.70 61.36 95.71 74.78

com1 35.93 63.93 88.30 74.17 35.36 63.93 90.57 74.95
com2 35.55 64.77 85.83 73.83 35.27 64.11 89.98 74.86
com3 35.62 65.31 83.22 73.15 35.44 64.02 89.81 74.75

WPP Win + Word + Pos + Link, and com3 indicates the feature combination
of WPP Lev+ Word + Pos + Link.

We can see that 1) all these individual features over two classifiers signifi-
cantly reduce the CER compared to the baseline; 2) theWPP Win andWPP Lev
perform better than WPP Dir which shows that position information is helpful;
3) linguistic features perform better than three WPP features over the MaxEnt
(except link), while worse than those over the SVM classifier in terms of CER.
However, they all significantly reduce the CER compared to the baseline; 4)
WPP Win + word + pos + link obtains the best performance both on Max-
Ent and SVM classifiers. Feature combinations outperform any of the individual
features; 5) SVM classifier outperforms the MaxEnt classifier on all features in
terms of the CER.

5.4 Classification Experiment on Multi-classifier Combination
Strategy

The results of the Multi-classifier Combination experiment are shown in Table 3.

Table 3. Results of multi-classifier combination for translation error detection

MaxEnt SVM Multi-classifier
Feature CER(%) F(%) CER(%) F(%) CER(%) F(%)

Baseline 41.59 – 41.59 – 41.59 –

com1 35.93 74.17 35.36 74.95 35.31 74.55
com2 35.55 73.83 35.27 74.86 34.94 74.55
com3 35.62 73.15 35.44 74.75 34.90 74.47
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We can see from the results that 1) compared to the baseline, the proposed
multi-classifier combination method achieved significant improvement by relative
15.10%, 15.99% and 16.09% in terms of CER. 2) compared to the MaxEnt and
SVM classifiers over three feature combinations, namely com1, com2 and com3,
the proposed multi-classifier combination method achieved significant improve-
ment respectively by relative 0.15%, 0.94%, 1.52%, and 1.73%, 1.72%, 2.02% in
terms of CER. 3) WPP Lev + word + pos + link and WPP Win + word +
pos + link are significantly better than WPP Dir + word + pos + link, which
indicates that the flexible position based WPP feature is more useful than the
fixed position based WPP on the multi-classifier combination.

From the comparison of the results, we can conclude: 1) generally speaking,
WPP Win performs the best and robust both in the three individual WPP
features and the three combined features. The reason we consider is that the
sliding window makes the alignment more flexible and considers more context
information. 2) linguistic features are helpful to the error detection. 3) multi-
classifier strategy is effective to further improve the error detection performance.

Based on the observations, we also found that 1) the name entities (person
name, location name, organization name etc.) are prone to be wrongly classified;
2) the prepositions, conjunctions, auxiliary verbs and articles are easier to be
wrongly classified due to the factors that they often have an impact on the word
orders or lead to empty alignment links; 3) the proportion of the notional words
that are wrongly classified is relatively small.

Conclusions and Future Work

This paper presents a multi-classifier combination strategy for translation error
detection. Firstly three different kinds of WPP features, three linguistic features
and two individual classifiers are introduced, then a probability product based
multi-classifier combination method is proposed which multiplies the correspond-
ing classification probabilities respectively coming from MaxEnt and SVM clas-
sifiers for each word in a hypothesis, and then decides the label by the maximum
probability. Experimental results on Chinese-to-English NISTMT data sets show
that 1) in terms of individual classifiers used in our experiments, SVM classifier
outperforms the MaxEnt classifier; 2) the proposed multi-classifier combination
method performs the best compared to two individual classifiers.

In future work, we intend to carry out further study on the error detection
task in the respects of 1) introducing paraphrases to annotate the hypotheses
so that it can truly reflect the correct or incorrect at the semantic level; 2)
introducing new useful features to further improve the detection capability; 3)
performing experiments on more language pairs to verify our proposed method.
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