
Text classification with Document Embeddings

Chaochao Huang, Xipeng Qiu, and Xuanjing Huang
1 Shanghai Key Laboratory of Intelligent Information Processing
2 School of Computer Science, Fudan University, Shanghai, China

{chaochaohuang12, xpqiu,xjhuang}@fudan.edu.cn

Abstract. Distributed representations have gained a lot of interests in
natural language processing community. In this paper, we propose a
method to learn document embedding with neural network architecture
for text classification task. In our architecture, each document can be
represented as a fine-grained representation of different meanings so that
the classification can be done more accurately. The results of our experi-
ments show that our method achieve better performances on two popular
datasets.

1 Introduction

Text classification is a crucial and well-proven method for organizing the collec-
tion of large scale documents, which has been widely used in a lot of tasks in
natural language processing or information retrieval, for instance, spam filter-
ing[1, 3, 5],email routing[11] and sentiment analysis[21].

Currently, most of the state-of-the-art text classification methods are based
on machine learning algorithms[25], such as decision tree[7, 22], Naive Bayes[15],
support vector machine (SVM)[10], and so on.

Since the input of machine learning algorithms must be a fixed-length feature
vector, the documents are often represented with vector space model (VSM) [24]
(also called bag-of-words(BOW)). Each dimension corresponds to one word, and
the dimensionality of the vector is the size of the vocabulary. However, this kind
of representation has two disadvantages: (1) the represented vector is often high
dimensional and very sparse, which brings a challenge for traditional machine
learning algorithm; (2) it ignores the semantics of the words.

Although lots of feature selection methods [27] are proposed, these features
are still sparse and not optimum. A great correlation and redundant information
exist among these features.

Recently, word embeddings are becoming more and more popular and have
shown excellent performance in various natural language processing tasks [17,
2, 6, 19, 9]. Each word is represented by a dense vector and words with similar
meanings will be close to each other in the vector space. Distributed repre-
sentations, which are originally designed for words[23], have also been used to
represent phrases sentences[18, 16].

Although word embeddings have been applied to text classification [14, 13],
there are two problems when utilizing the word embeddings on text classification.

2

1. It is still not clear to combine the word embeddings to represent the doc-
uments. The documents often have words with various lengths, we cannot
use the word embeddings directly to train a classifier. A simple approach is
using a weighted average of all the words in the document.

2. Traditional word embeddings are learned by probabilistic language model in
a separate step, which are not optimal for text classification task.

In this paper, we propose a method to learn word embeddings directly in text
classification task. A document is also represented by a vector, called document
embedding. Document embeddings can be calculated by the vector representa-
tions of its containing words. Our method can handle all words contained in a
document and need not reduce the dimensionality of input.

In our method, each document is represented as the combination of the word
embeddings of its containing words. Since the word embedding can represent
different meanings of each word, the document embedding can also represent
different meanings of each document and documents close to each other in the
vector space may be of the same topic. The experimental results also proves this
hypothesis.

The remaining parts of the paper is arranged as follows: Section 2 surveys
related works on text classification. Section 3 describes our architecture and
learning algorithms. The experiments will be detailed described in section 4 and
finally there will be a conclusion.

2 Related Works

Recently, deep neural networks are so popular and are widely used in lots of do-
mains for the purpose of classification, including text classification. For instance,
Restricted Boltzman Machines(RBMs) have been utilized to do the document
and image classification[12].

Liu [14] used deep belief network (DBN) to obtain the high level abstraction
of input data to model the semantic correlation among words of documents
for text classification. However, since he used Restricted Boltzmann Machines
(RBM) [8] to obtain the high level abstraction of input data, the dimensionality
of the input data need be reduced in advance. Thus, a lot of information may
be lost.

Le and Mikolov [13] proposed Paragraph Vector, an unsupervised framework
that learns continuous distributed vector representations for pieces of texts. The
texts can be of variable-length, ranging from sentences to documents. Although
paragraph vector can be applied to variable-length pieces of document, it is
learned separately before they are used in text classification.

Socher et al. [26] used a more sophisticated approach to combine the word
vectors in an order given by a parse tree of a sentence, using matrix-vector
operations. However, it has been shown to work for only sentences because it
relies on parsing.

3

3 Neural Network Architecture for Text Classification

According to our hypothesis, a document can be represented as the accumulation
of all words it contains. Each word has an exact and unique meaning, which is
represented by the different decimals in each element of the word embedding.
Similarly, the document’s meaning is also represented by each element of its
document embedding.

3.1 Document Embeddings
The architecture we propose is described in figure 1.

bag-of-words vector : ࢄ 1 0 3 0 0 0 2 0 0 0 0 0 1…

Term frequency (TF) : ࢞
(� is word count)

ͳ� 0 �͵ 0 0 0 �ʹ 0 0 0 0 0
ͳ�…

Length of dictionary

⁞ ⁞ ⁞ ⁞

Look up table : �
Hidden

units

Multiply TF

& sum up → � …
Number of hidden units

Sigmoid → � …

…Multiply weight

matrix ࢃ → � Number of categories

…Sigmoid → ࢟

…… …………

Fig. 1: Neural Network Architecture

A document is a bag-of-words representation X = {X1, X2, ..., Xn}, in which
Xi means the ith word shows up Xi times in the document. We first transform
X into x by:

xi = Xi/
∑

Xi∈X

Xi (1)

4

so that the following calculations will not be affected by the length of the doc-
ument.
U is a look up table of the dictionary. Each column in U is a word embedding.
As the description above, a document S is calculated as:

Z1 = Ux (2)
S = f(Z1) (3)

where Z1 is a document embedding.
Supposing that ŷ is the output from the network, it is computed as follows:

Z2 = WS (4)
ŷ = f(Z2) (5)

where W is the a weight matrix and f(z) is sigmoid activation function:

f(z) =
1

1 + e−z
(6)

3.2 Training phases
The training problem is to determine the parameters of the network θ = (U,W)
from the training data.

The training is performed using Stochastic Gradient Descent (SGD). We go
through all the training data iteratively, and update the weight matrices U and
W online (after processing every document).
At each training phase, θ is updated with the standard backpropagation algo-
rithm and the gradient of the error vector is computed using a cross entropy
criterion:

error(x) = y(x)− ŷ(x) (7)
Where y(x) is the gold classification vector, using n-hot encoding and the cross
entropy[20] we use here is:

Em = −
m∑
i=1

[yi ln ŷi + (1− yi) ln (1− ŷi)] (8)

where m is the category count.
To minimize Em, we calculate the derivative of W and U. The process is as

follows:
∂Em

∂Z2j

=
∂Em

∂ŷj

∂ŷi
∂Z2j

= (−yj
ŷj

+
1− yj
1− ŷj

)ŷj(1− ŷj)

= ŷj − yj (9)

5

We assume
e0j =

∂Em

∂Z2j

(10)

e1j =
∂Em

∂Z1j

(11)

Now that through back propagation we get

∂Em

∂Z1i

=

m∑
k=1

∂Em

∂Z2k

∂Z2k

∂Si

∂Si

∂Z1i

=
m∑

k=1

e0kWkiSi(1− Si)

(12)

Then using chain derivation rule we get
∂Em

∂Wij
= e0i

∂Z2i

∂Wij

= (ŷi − yi)Sj

(13)

∂Em

∂Uij
= e1i

∂Z1i

∂Uij

= [

m∑
k=1

e0kWkiSi(1− Si)]xj

= [
m∑

k=1

(ŷk − yk)WkiSi(1− Si)]xj

(14)

Now we can easily find that the weight matrix W between the document vector
d(x) and the output layer y∗(x) can be updated as:

W ∗ = W + α
∂Em

∂W
(15)

and the dictionary look up table matrix U can be updated following:

U∗ = U + α
∂Em

∂U
(16)

where α is the learning rate.

4 Experiments
We evaluate the performance our method by comparing the BOW representation.

4.1 Datasets
We setup our experiments on two datasets: LSHTC and Sogou datasets.

LSHTC This dataset is from the 4th Large Scale Hierarchical Text Classi-
fication (LSHTC) Challenge3. The challenge is based on a large dataset created
3 http://www.kaggle.com/c/lshtc

6

from Wikipedia and the document set is multi-class, multi-label and hierarchical
though we do not utilize any hierarchical information. Documents here is high
dimensional(roughly 1,620,000) and very sparse on each category. The format of
each document is like:

12370,306783 1:1 45:3 1982:1 ... 32600:1

which means the document belongs to category 12370 and 30678 at the same
time, and the remaining part is the sparse representation in bag-of-words.

In consideration of time efficiency, we choose 100 categories from the dataset
that most frequently appear. We only choose the documents which only contain
one category in the top 100 categories.

For each category, we choose less than 150 samples for training and less than
10 samples for testing. Finally we get 13113 training documents and 800 testing
documents, every document is single-labeled. The categories we choose are shown
in table 1.

Table 1: LSHTC Chosen Categories
24177, 285613, 98808, 264962, 167593, 242532, 52954, 300558,
444502, 78249, 237290, 220514, 10721, 337728, 174545, 73518, 24016,
327590, 154064, 374771, 366417, 87241, 73092, 115838, 334220,
169902, 59758, 347803, 364106, 178462, 287120, 14843, 260304,
73462, 23611, 322170, 174425, 167844, 29462, 158599, 299629, 34161,
390974, 228232, 150636, 341276, 36224, 289559, 418360, 323972,
352578, 284433, 383600, 300073, 231746, 60639, 251484, 2830,
183203, 234578, 283823, 161537, 286264, 304661, 93718, 348488,
139391, 397350, 244711, 186125, 419276, 1508, 398319, 428719,
290537, 403132, 395447, 351111, 324660, 13252, 131804, 430081,
24052, 244616, 86836, 393137, 374859, 111772, 206933, 109127,
96443, 228238, 269785, 2903, 272741, 213350, 225356, 174595,
414726, 429208

Sogou Dataset This dataset4 is all of website news in Chinese and the
corpus mainly come from Sohu.com. All the documents’ categories are manually
labeled and the category count is 10.

Also for time efficiency, we use the mini version of the dataset, which contains
17910 documents on 9 categories. The detail on each category is shown in table 2
We firstly do word segmentation on the whole set and get about 270,000 words in
our dictionary. Then we transfer each document into bag-of-words representation
just like the above dataset. Finally we got 17,014 training vectors and 896 testing
vectors, all are single-labeled.

The overall description of datasets is in table 3.

4 http://www.sogou.com/labs/dl/c.html

7

Table 2: Summary of Sogou Mini Set
Category Number Category Train Test

C000008 Finance 1890 100
C000014 Sports 1891 99
C000024 Military 1890 100
C000023 Culture 1891 99
C000022 Recruitment 1890 100
C000020 Education 1891 99
C000016 Travel 1890 100
C000013 Health 1891 99
C000010 Vehicle 1890 100

Table 3: Overall Description of Datasets
Dataset Category Count Train Count Test Count Vocabulary Size
LSHTC 100 13113 800 161899

Sogou Mini 9 17014 896 270000

4.2 Experimental settings

Firstly, we initialize U and W (described in section 3) with random decimals
between -1 and 1. We found that the larger the hidden units count is, the higher
the classification accuracy will be, however the memory and time cost will also
grow up. So hidden units count is set to 30, balancing the memory cost and the
outcome accuracy. Learning rate is dynamic and initialized to 1.0. When error(x)
grows up in 10 consecutive training documents, learning rate will decrease by
0.01, vice versa.

Just as we demonstrate in section 3, the training is performed using Stochas-
tic Gradient Descent (SGD). We go through all the training data iteratively, and
update the weight matrices U and W online (after processing every document)
until convergence appears. Here we define convergence as error(x) is smaller
than 10−5 in 10 consecutive training documents.

We evaluate our model in two ways. First, we use the output ŷ of our neural
network directly as the classification vector and use the index of the largest
element as the category number. Second, we replace each point in bag-of-words
vector with the corresponding column in U(which is in fact a kind of word
embedding), multiplying the TF of the word. Then we use a linear SVM classifier
to train and test the new document vectors.

During all the process, we use AMD GPU and its Aparapi5 to do parallel
computing and accelerate the whole process.

5 http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-libraries/aparapi/

8

4.3 Results

To compare the performance of our representations with BOW, we use the pop-
ular LIBSVM[4] as the final classifier. Table 4 and 5 show the results. NN-15
represents that the dimensionality of document embedding is 15, while NN-30
represents that the dimensionality of document embedding is 30.

Since our NN architecture can output the class label directly, we also give the
results without combining SVM. The evaluations without SVM have a similar
accuracy with BOW+SVM when a document is represented by 30 dimensional
vector. With combining SVM, our method outperforms BOW+SVM a lot on
both the datasets.

Table 4: Comparative results on LSHTC dataset.
Method Micro-P Macro-P Macro-R Macro-F

BOW + SVM 64.50 61.46 64.50 62.95
NN-15 52.12 52.13 47.12 49.50

NN-15 + SVM 62.12 62.12 61.71 61.91
NN-30 53.00 50.39 53.00 51.66

NN-30 + SVM 68.00 62.76 68.00 65.28

Table 5: Comparative results on Sogou dataset
Method Micro-P Macro-P Macro-R Macro-F

BOW + SVM 91.07 91.17 91.07 91.12
NN-15 90.18 90.17 90.42 90.29

NN-15 + SVM 90.85 90.84 90.94 90.89
NN-30 91.07 91.15 91.06 91.11

NN-30 + SVM 91.52 91.58 91.51 91.54

From the results, we can see that our architecture achieve better perfor-
mances on both the datasets. This is mainly because we represent each docu-
ment in a more detailed way comparing with pure bag-of-words representations.
And the detailed representations are highly related to the topic of documents.
Thus making the classification has a higher accuracy.

We can also find that the experimental results over the two test datasets are
quite different. Performance on Sogou is better than that on LSHTC, on all the
five methods. That is perhaps due to different data density of the two datasets.
We believe that our architecture is more powerful on dense dataset, which has
more average documents on each category. Therefore, our method which can
generate document embedding to represent a document and do the document
classification task is efficient and useful.

9

5 Related Works

Liu [14] used deep belief network (DBN) for text classification. However, since
he used Restricted Boltzmann Machines (RBM) [8] to obtain the high level
abstraction of input data, the dimensionality of the input data needs to be
reduced in advance. Thus a lot of information may be lost.

Le and Mikolov [13] proposed Paragraph Vector, an unsupervised framework
that learns continuous distributed vector representations for pieces of texts. The
texts can be of variable-length, ranging from sentences to documents. Although
paragraph vector can be applied to variable-length pieces of document, it is
learned separately before they are used in text classification.

Socher et al. [26] used a more sophisticated approach to combine the word
vectors in an order given by a parse tree of a sentence, using matrix-vector
operations. However, it has been shown to work for only sentences because it
relies on parsing.

6 Conclusion

In this paper, we propose a neural network architecture for text classification. In
our architecture, each document is represented by a low dimensional embedding
that is similar to word embedding. Experiments show that our embeddings have
a higher classification accuracy than BOW vectors.

In future, we will use our method to do the multi-label text classification
task. Besides, we will also investigate whether it can increase the performance
by increasing the network layers.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable comments.
This work was funded by NSFC (No.61003091) and Science and Technology
Commission of Shanghai Municipality (14ZR1403200).

References

[1] Androutsopoulos, I., Koutsias, J., Chandrinos, K.V., Paliouras, G., Spy-
ropoulos, C.D.: An evaluation of naive bayesian anti-spam filtering. arXiv
preprint cs/0006013 (2000)

[2] Bengio, Y., Schwenk, H., Senécal, J.S., Morin, F., Gauvain, J.L.: Neural
probabilistic language models. In: Innovations in Machine Learning, pp.
137–186. Springer (2006)

[3] Carvalho, V.R., Cohen, W.W.: On the collective classification of email
speech acts. In: Proceedings of the 28th annual international ACM SI-
GIR conference on Research and development in information retrieval. pp.
345–352. ACM (2005)

10

[4] Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011)

[5] Cohen, W.W.: Learning rules that classify e-mail. In: AAAI spring sympo-
sium on machine learning in information access. vol. 18, p. 25. California
(1996)

[6] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa,
P.: Natural language processing (almost) from scratch. The Journal of
Machine Learning Research 12, 2493–2537 (2011)

[7] Dumais, S., Platt, J., Heckerman, D., Sahami, M.: Inductive learning algo-
rithms and representations for text categorization. In: Proceedings of the
seventh international conference on Information and knowledge manage-
ment. pp. 148–155. ACM (1998)

[8] Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data
with neural networks. Science 313(5786), 504–507 (2006)

[9] Huang, E.H., Socher, R., Manning, C.D., Ng, A.Y.: Improving word repre-
sentations via global context and multiple word prototypes. In: Proceedings
of the 50th Annual Meeting of the Association for Computational Linguis-
tics: Long Papers-Volume 1. pp. 873–882. Association for Computational
Linguistics (2012)

[10] Joachims, T.: Text categorization with support vector machines: Learning
with many relevant features. Springer (1998)

[11] Khosravi, H., Wilks, Y.: Routing email automatically by purpose not topic.
Natural Language Engineering 5(3), 237–250 (1999)

[12] Larochelle, H., Bengio, Y.: Classification using discriminative restricted
boltzmann machines. In: Proceedings of the 25th international conference
on Machine learning. pp. 536–543. ACM (2008)

[13] Le, Q.V., Mikolov, T.: Distributed representations of sentences and docu-
ments. arXiv preprint arXiv:1405.4053 (2014)

[14] Liu, T.: A novel text classification approach based on deep belief network.
In: Neural Information Processing. Theory and Algorithms, pp. 314–321.
Springer (2010)

[15] McCallum, A., Nigam, K., et al.: A comparison of event models for naive
bayes text classification. In: AAAI-98 workshop on learning for text cate-
gorization. vol. 752, pp. 41–48. Citeseer (1998)

[16] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed
representations of words and phrases and their compositionality. In: Ad-
vances in Neural Information Processing Systems. pp. 3111–3119 (2013)

[17] Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space
word representations. In: Proceedings of NAACL-HLT. pp. 746–751 (2013)

[18] Mitchell, J., Lapata, M.: Composition in distributional models of semantics.
Cognitive science 34(8), 1388–1429 (2010)

[19] Mnih, A., Hinton, G.E.: A scalable hierarchical distributed language model.
In: NIPS. pp. 1081–1088 (2008)

[20] Nasr, G.E., Badr, E., Joun, C.: Cross entropy error function in neural net-
works: Forecasting gasoline demand. In: FLAIRS Conference. pp. 381–384
(2002)

11

[21] Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and
trends in information retrieval 2(1-2), 1–135 (2008)

[22] Quinlan, J.R.: Induction of decision trees. Machine learning 1(1), 81–106
(1986)

[23] Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by
back-propagating errors. MIT Press, Cambridge, MA, USA (1988)

[24] Salton, G., Wong, A., Yang, C.: A vector space model for automatic index-
ing. Communications of the ACM 18(11), 613–620 (1975)

[25] Sebastiani, F.: Machine learning in automated text categorization. ACM
computing surveys 34(1), 1–47 (2002)

[26] Socher, R., Lin, C.C., Ng, A.Y., Manning, C.D.: Parsing Natural Scenes
and Natural Language with Recursive Neural Networks. In: Proceedings of
the 26th International Conference on Machine Learning (ICML) (2011)

[27] Yang, Y., Pedersen, J.: A comparative study on feature selection in text
categorization. In: Proc. of Int. Conf. on Mach. Learn. (ICML). vol. 97
(1997)

