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Abstract. Chinese semantic dependency graph is extended from seman-
tic dependency tree, which uses directed acyclic graphs to capture richer
latent semantics of sentences. In this paper, we propose two approaches
for Chinese semantic dependency graph parsing. In the first approach,
we build a non-projective transition-based dependency parser with the
Swap-based algorithm. Then we use a classifier to add arc candidates
generated by rules to the tree, forming a graph. In the second approach,
we build a transition-based graph parser directly using a variant of the
list-based transition system. For both approaches, neural networks are
adopted to represent the parsing states. Both approaches yield signifi-
cantly better results than the top systems in the SemEval-2016 Task 9:
Chinese Semantic Dependency Parsing.

1 Introduction

Given a complete sentence, semantic dependency parsing aims at determining
all the word pairs related to each other semantically and assigning specific pre-
defined semantic relations. The results of semantic dependency parsing can be
highly beneficial for question answering (who did what to whom when and where).

Chinese semantic dependency graphs are directed acyclic graphs (DAG) ex-
tended from traditional tree-structured representation of Chinese sentences. This
graph structure can capture richer latent semantics. The goal of SemEval-2016
Task 9: Chinese Semantic Dependency Parsing is to identify such semantic struc-
tures from a corpus of Chinese sentences.1 The task provides two distinguished
corpora in the NEWS domain and the TEXTBOOKS domain. An example of
semantic dependency graph is presented in Fig. 1. We can see that 他(he) has
two head words, respectively 离开(leave) and 去(go) with the Agent (Agt) rela-
tion in the graph representation. More detailed information about the corpora
will be reported in Section 4.

Transition-based dependency parsing has become increasingly popular in
NLP because of its speed and accurate performance. This kind of parser con-
struct dependency trees by using a sequence of transition actions over input sen-
tences. They are mostly used to produce dependency trees, rather than graphs,
or more accurately DAG in Chinese Semantic Dependency Parsing.

1 http://alt.qcri.org/semeval2016/task9/
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ROOT0 他1 将2 离开3 北京4 去5 上海6

he will leave Beijing go Shanghai

ROOT

Agt
mTime Lini

eSucc

Agt

Lfin

Fig. 1: An example of semantic dependency graph.

To address the challenge of DAG parsing, we investigate two approaches in
this work. Our first approach has two stages. First, we adopt a set of linguistic-
motivated rules to transform graphs to trees, based on which a traditional non-
projective transition-based parser is trained. Then, we use a classifier to recover
the extra arcs from a candidate arc set generated also by rules and add them to
the parser’s output to form dependency graphs. A similar approach was studied
in [23], which applied pseudo-projective transformations [20] to transform non-
projective dependencies to projective ones, and then use a dependency graph
parser to parse projective graphs. This approach typically requires inconvenient
pre-process and post-process.

We further propose a transition-based dependency graph parser that produce
DAG directly for Chinese sentences. This parser is a variant of the list-based al-
gorithm of [4], which was designed to parse dependency trees. In order to handle
dependency graphs, we change the preconditions of the transitions to allow some
words to have multiple head words. We have also tried to simplify the transition
action set to investigate the relation between the parser performance and the
number of transition actions. Extensive experiments show that both of our ap-
proaches obtain significantly better results compared with the top participated
systems in the SemEval-2016 Task 9: Chinese Semantic Dependency Parsing.

2 Methods

Since most existing current dependency parsers only deal with dependency trees,
it is a challenge to produce graphs with transition-based parser. To begin with,
we propose a hybrid system which combines a traditional dependency tree pars-
er and a binary classifier for complementing extra arcs. Then we propose a
transition-based dependency parser that produce dependency graphs directly.

2.1 Tree-Based Method

In our first approach, we separate the task into two steps. In the first step, we use
a traditional transition-based dependency parser to parse preprocessed semantic
dependency trees. Then an SVM classifier is used to identify extra arcs that will
be added to the parser results from candidate arc set created by rules.

Pre-process

Transforming DAGs to trees is typically a process of removing extra arcs of words
which have multiple heads. We designed certain rules to remove such extra arcs
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in given semantic dependency graphs so that we can get semantic dependency
trees for training the tree parser. These rules will be reused in the future to
re-generate candidate arc set from trees produced by the tree parser.

These rules require human knowledge and are summarized by observing se-
mantic dependency graphs in training data. We present them in the Appendix.
Our rules can cover 95.5% graph situations in the NEWS corpus and 95.0% in the
TEXTBOOKS corpus. The uncovered ones are basically all irregular situations,
under which we hold the closest arc of the multi-head words.

For example, in causative sentences, a noun can be the object of the causative
verb as well as the subject of the following verb, which introduces multiple
heads to it. Fig. 2 shows an instance of this situation. For this kind of graph,
we remove the dependency arcs between the noun and the following verb (介绍

(introduce)
Agt−−→ 张先生 (Mr.Zhang)).

After dependency parsing, these rules are used again to re-generate candidate
arcs from parsing results. For every verb pair with an arc between them, we find
all noun children of the head verb “请 (invite)”, and add arcs from the child
verb “介绍 (introduce)” to these nouns to the candidate arc set (the two dashed
arcs). According to the gold-standard graph, the label of the red arc is Agt, while
the label of the blue one is NULL, meaning it should not be added to the final
semantic dependency graph.

ROOT0 我们1 请2 张先生3 介绍4 中国5 的6 情况7

we invite Mr.Zhang introduce China of situation

ROOT

Agt Datv

ePurp

Agt

Cont

mAux

Nmod

NULL

Fig. 2: A pre-process and post-process example of semantic dependency graph.

Dependency Parser

The semantic dependency trees transformed from DAGs are not necessarily
projective. So we adopt the Swap-based algorithm [19], which can parse non-
projective trees with a time complexity that is quadratic in the worst case but
still linear in the best case.

[3] proposed a transition-based dependency parser using neural networks as
the classifier, which solved several problems caused by traditional sparse indica-
tor features and yielded good results. Following their footsteps, we train a neural
network classifier for use in a greedy, transition-based dependency parser. Their
feature templates are used as the basic features in our experiment.

SVM Classifier for Post-process

The preprocessing rules mentioned above are used reversely to generate the
training samples of SVM classifier from preprocessed semantic dependency trees.
Labels of these samples include all possible relations of extra arcs and one NULL
label indicating that the corresponding candidate arc should not be added to the
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tree. The features primarily include words, POS tags and distances. The specific
feature templates are presented in [8].

2.2 Dependency Graph Parser

The above method is a compromise to the tree parser, which still requires careful
pre-process and post-process. Moreover, for new dependency relation sets, the
preprocessing rules need to be redesigned. We then present a transition-based
dependency graph parser, which parses dependency graphs directly. In the Swap-
based algorithm [19], we have to precompute the projective order which indicates
when the Swap transition appears while generating oracle transition sequences.
However, the coocurrence of non-projectivity and multiple heads makes it hard
to compute the projective order. Here, we base our graph parser on the list-based
arc-eager algorithm that was originally introduced to parse non-projective trees
[4]. By simply modifying the preconditions of transitions, we make it capable
of parsing dependency graphs. The specific preconditions are introduced in the
next section.

We use a tuple (σ, δ, β,A) to represent each of the parsing state, where σ is a
stack holding processed words, δ is a stack holding words popped out of σ that
will be pushed back in the future, and β is a buffer holding unprocessed words.
A is a set of labeled dependency arcs. We use index i to represent word wi, and
the index 0 represents the root of the graph w0. It’s important to notice that in
this task all the roots w0 of DAGs are required to have only one child. The initial
state is ([0], [ ], [1, · · · , n], ∅), while the terminal state is (σ, δ, [ ], A). During the
parsing, arcs will only be generated between top element of σ, wi, and the first
element of β, wj . The transition is generated by consulting the gold-standard
trees during training and a neural network classifier during decoding.

Transition System 1

Table 1: Transitions in the list-based arc-eager algorithm.

Transitions Current State ⇒ Next State

Leftl-Reduce ([σ|i], δ, [j|β], A) ⇒ (σ, δ, [j|β], A ∪ {(i l←− j)})
Rightl-Shift ([σ|i], δ, [j|β], A) ⇒ ([σ|i|δ|j], [ ], β, A ∪ {(i l−→ j)})
No-Shift ([σ|i], δ, [j|β], A) ⇒ ([σ|i|δ|j], [ ], β, A)

No-Reduce ([σ|i], δ, [j|β], A) ⇒ (σ, δ, [j|β], A)

Leftl-Pass ([σ|i], δ, [j|β], A) ⇒ (σ, [i|δ], [j|β], A ∪ {(i l←− j)})
Rightl-Pass ([σ|i], δ, [j|β], A) ⇒ (σ, [i|δ], [j|β], A ∪ {(i l−→ j)})
No-Pass ([σ|i], δ, [j|β], A) ⇒ (σ, [i|δ], [j|β], A)

The transitions of the dependency graph parser is listed in Table 1, while
corresponding preconditions are described in Table 2. Leftl-∗ and Rightl-∗
add an arc with label l from wj to wi, and vice versa. These transitions are
performed only when one of wi and wj is the head of the other. Otherwise, No-
∗ will be performed. ∗-Shift is performed when no dependency exists between
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Table 2: Preconditions of transitions in Table 1.

Transitions Preconditions

Leftl-∗ [i 6= 0] ∧ ¬[(i→∗ j) ∈ A]

Rightl-∗ ¬[(j →∗ i) ∈ A]

∗-Shift ¬[∃k ∈ σ.(k 6= i) ∧ ((k → j) ∨ (k ← j))]

∗-Reduce [∃h.(h→ i) ∈ A] ∧ ¬[∃k ∈ β.(i→ k) ∨ (i← k)]

wj and any word in σ other than wi, which pushes all words in δ and wj into
σ. ∗-Reduce is performed only when wi has head and is not the head or child
of any word in β, which pops wi out of σ. ∗-Pass is performed when neither
∗-Shift nor ∗-Reduce can be performed, which moves wi to the front of δ.

(i
l−→ j) is used to denote an arc from wi to wj with label l. (i→ j) and (i→∗ j)

indicate that wi is a head and an ancestor of wj respectively.

The preconditions of Leftl-∗, Rightl-∗ and ∗-Reduce are different from
[4]’s algorithm. For Leftl-∗ and Rightl-∗, it’s necessary to make sure no word
has multiple heads in their tree parser, which is not required in our graph parser.
For ∗-Reduce, we have to confirm that all of wi’s heads and children are found
before removing it from σ. While they only need to check wi’s children, since wi

already has and can only have one head in tree structure.

Table 3: A transition sequence for dependency graph in Fig. 1 generated by
list-based arc-eager algorithm with gold-standard graph.

State Transition σ δ β A

0 Initialization [0] [ ] [1|β] ∅
1 No-Shift [σ|1] [ ] [2|β]

2 No-Shift [σ|2] [ ] [3|β]

3 Left-Reduce [σ|1] [ ] [3|β] A ∪ {2← mTime− 3}
4 Left-Pass [σ|0] [1] [3|β] A ∪ {1← Agt− 3}
5 Right-Shift [σ|3] [ ] [4|β] A ∪ {0− ROOT→ 3}
6 Right-Shift [σ|4] [ ] [5|β] A ∪ {3− Lini→ 4}
7 No-Reduce [σ|3] [ ] [5|β]

8 Right-Pass [σ|1] [3] [5|β] A ∪ {3− eSucc→ 5}
9 Left-Reduce [σ|0] [3] [5|β] A ∪ {1← Agt− 5}
10 No-Shift [σ|5] [ ] [6|β]

11 Right-Shift [σ|6] [ ] [ ] A ∪ {5− Lfin→ 6}

A transition sequence for the sentence in Fig. 1 generated by the list-based
arc-eager algorithm is presented in Table 3. In state 4, w1 is moved from σ
to δ because it has another head w5 in β, and the arc between them will be
generated in the future (state 9). In state 8, the transition is Right-Pass rather
than Right-Shift because w5 still has a child w1 in σ, w3 is moved to δ so
that the arc between w5 and w1 can be generated (state 9). In states 3, 7 and
9, w2, w4 and w1 are popped out of σ respectively because all of their children
and heads have been generated.
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Transition System 2

Table 4: Transitions and corresponding preconditions
in the simplified list-based algorithm.

Transitions Change of State & Preconditions

Left-Popl ([σ|i], δ, [j|β], A)⇒ (σ, δ, [j|β], A ∪ {(i l←− j)})
[i 6= 0] ∧ ¬[(i→∗ j) ∈ A] ∧ ¬[∃k ∈ β.(i→ k) ∨ (i← k)]

Left-Arcl ([σ|i], δ, [j|β], A)⇒ (σ, [i|δ], [j|β], A ∪ {(i l←− j)})
[i 6= 0] ∧ ¬[(i→∗ j) ∈ A]

Right-Arcl ([σ|i], δ, [j|β], A)⇒ (σ, [i|δ], [j|β], A ∪ {(i l−→ j)})
¬[(i→∗ j) ∈ A]

Shift (σ, δ, [j|β], A) ⇒ ([σ|δ|j], [ ], β, A)
σ = [ ] ∨ ¬[∃k ∈ σ.(k → j) ∨ (k ← j)]

Pass ([σ|i], δ, [j|β], A)⇒ (σ, [i|δ], [j|β], A)
default transition

In order to improve the performance of our parser, we adopt another list-
based arc-eager algorithm [5] which has less transitions which is referred to as
simplified list-based algorithm henceforth.

Table 5: A transition sequence for dependency graph in Fig. 1 generated by
simplified list-based algorithm with gold-standard graph.

State Transition σ δ β A

0 Initialization [0] [ ] [1|β] ∅
1 Shift [σ|1] [ ] [2|β]
2 Shift [σ|2] [ ] [3|β]
3 Left-Pop [σ|1] [ ] [3|β] A ∪ {2← mTime− 3}
4 Left-Arc [σ|0] [1] [3|β] A ∪ {1← Agt− 3}
5 Right-Arc [ ] [0, 1] [3|β] A ∪ {0− ROOT→ 3}
6 Shift [σ|3] [ ] [4|β]
7 Right-Arc [σ|1] [3] [4|β] A ∪ {3− Lini→ 4}
8 Shift [σ|4] [ ] [5|β]
9 Pass [σ|3] [4] [5|β]
10 Right-Arc [σ|1] [3, 4] [5|β] A ∪ {3− eSucc→ 5}
11 Left-Pop [σ|0] [3, 4] [5|β] A ∪ {1← Agt− 5}
12 Shift [σ|5] [ ] [6|β]
13 Right-Arc [σ|4] [5] [6|β] A ∪ {5− Lfin→ 6}

Left-Arcl, Left-Popl, Right-Arcl, Shift and Pass are transitions Leftl-
Pass, Leftl-Reduce, Rightl-Pass, No-Shift and No-Pass in system 1 re-
spectively. While Rightl-Shift and No-Reduce are discarded. In labeled pars-
ing task like semantic dependency parsing, the number of transitions that gen-
erate arcs (Leftl-∗, Rightl-∗) equals to the number of label classes. Thus the
number of transitions is reduced by a quarter for our task.

A transition sequence generated by simplified list-based algorithm for the
same semantic dependency graph in Fig. 1 is presented in Table 5. Since Right-
Shift is discarded, a Right-Arc and a Shift is used to replace it in the sim-
plified algorithm, resulting in an extra transition for each Right-Shift (states
5 and 6, states 7 and 8). Since No-Reduce is discarded, the word that should
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be popped out of σ stays, which generate an extra Pass every time it is moved
to δ (state 9). Generally speaking, we reduce the number of transitions at the
price of longer transition sequences.

Feature Templates

Our feature templates are generally adapted from [3]. Considering the difference
between dependency graphs and dependency trees, we add additional features
regarding the heads of words on top of σ and in the front positions of β. The
complete feature templates are presented in Table 6.

Table 6: Feature templates. (w−word; p−POS-tag; l−dependency label;
vlc, vrc, vlh, vrh−valency; d−distance; c−cluster)

Si−word in σ; Bi−word in β; Pi−word in δ; lc, rc, lh, rh−left/rightmost
child/head;llc, rrc, llh, rrh−leftmost of leftmost/rightmost of rightmost child/head.

Baseline Features

S0w, S1w,B0w,B1w,P0w, lc(S0)w, rc(S0)w, lh(S0)w, rh(S0)w, lc(B0)w, lh(B0)w,
llc(S0)w, rrc(S0)w, llh(S0)w, rrh(S0)w, llc(B0)w, llh(B0)w;S0p, S1p,B0p,B1p, P0p,
lc(S0)p, rc(S0)p, lh(S0)p, rh(S0)p, lc(B0)p, lh(B0)p, llc(S0)p, rrc(S0)p, llh(S0)p,
rrh(S0)p, llc(B0)p, llh(B0)p; lc(S0)l, rc(S0)l, lh(S0)l, rh(S0)l, lc(B0)l, lh(B0)l,
llc(S0)l, rrc(S0)l, llh(S0)l, rrh(S0)l, llc(B0)l, llh(B0)l

Valency & Distance

S0vlc, S0vrc, S0vlh, S0vrh, B0vlc, B0vlh; d(S0, B0)

Cluster

S0c, S1c,B0c,B1c, P0c, lc(S0)c, rc(S0)c, lh(S0)c, rh(S0)c, lc(B0)c,
lh(B0)c, llc(S0)c, rrc(S0)c, llh(S0)c, rrh(S0)c, llc(B0)c, llh(B0)c

Besides these baseline features, we add some non-local features including
valency, distance and cluster. The numbers of left and right modifiers to a given
head are identified as left valency and right valency respectively [30]. We extend
the definition to graphs and use left head valency and right head valency to
denote the numbers of left and right heads to a given modifier respectively.
And the original valencies are then referred to as left child valency and right
child valency. Brown Clustering [1] is a form of hierarchical clustering of words
based on the contexts in which they occur and have proved beneficial for neural
parsing [11]. We use pre-trained Brown clusters for each word involved in the
baseline features. All of these new features are represented as embeddings and
then pass through the neural network.

3 Experiments

3.1 Datasets

The SemEval-2016 Task 9 provides two distinguished corpora in the domain of
NEWS and TEXTBOOKS. Detailed statics are presented in Table 7. The non-
local dependencies [25] in the table refers to the dependency arcs which make
dependency trees collapsed.
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Table 7: Statics of the corpora.
(#g-sent is graph sentence number; #n-rate is non-local dependency rate.)

NEWS TEXTBOOKS

#sent #word #g-sent #n-rate #sent #word #g-sent #n-rate

Train 8,301 250,249 3,615 4.8% 10,754 128,095 2,506 5.0%

Dev 534 15,325 223 4.2% 1,535 18,257 363 5.1%

Test 1,233 34,305 364 2.9% 3,073 36,097 707 5.0%

The evaluation measures of this task are on two granularity, dependency arc
and the complete sentence. Labeled and unlabeled precision and recall with re-
spect to predicted dependencies are used as evaluation measures. Since non-local
dependencies are extremely difficult to discover, they are evaluated separately.
For sentence level, labeled and unlabeled exact matches are used to measure
sentence parsing accuracy. These metrics are abbreviated as:

• Labeled precision (LP), recall (LR), F1 (LF) and F1 score for non-local
dependencies (NLF);
• Unlabeled precision (UP), recall (UR), F1 (UF) and F1 score for non-local

dependencies (NUF);
• Labeled and unlabeled exact match (LM, UM).

When ranking systems, average F1 (LF) on testing sets are main references.

3.2 Results

The following hyper-parameters are used in all of our neural models: basic em-
bedding size (for words, POS tags and dependency labels) d = 50, hidden layer
size h = 400, dropout rate pd = 0.5, regularization parameter λ = 10−8, initial
learning rate of Adagrad η = 0.01.

Table 8: Results of our systems and other participating systems in NEWS corpus

System LP LR LF UP UR UF NLF NUF LM UM

IHS-RD-Belarus 58.78 59.33 59.06 77.28 78.01 77.64 40.84 60.2 12.73 20.60

OCLSP (lbpg) 55.64 58.89 57.22 72.87 77.11 74.93 45.57 58.03 12.25 18.73

OCLSP (lbpgs) 58.38 57.25 57.81 76.28 74.81 75.54 41.56 54.34 12.57 20.11

OCLSP (lbpg75) 57.88 57.67 57.78 75.55 75.26 75.4 48.89 58.28 12.57 19.79

OSU CHGCG 55.52 55.85 55.69 73.51 73.94 73.72 49.23 60.71 5.03 11.35

Tree+SVM (base) 61.08 60.60 60.84 78.60 77.98 78.29 41.43 63.62 13.95 22.87

List-based (base) 60.44 59.85 60.14 77.69 76.94 77.31 46.80 62.50 13.46 22.38

Simplified (base) 60.65 60.09 60.37 77.98 77.25 77.61 43.41 59.31 13.06 21.65

Tree+SVM (all) 61.47 61.01 61.24 79.19 78.60 78.89 40.89 62.89 14.36 23.03

List-based (all) 61.02 60.40 60.71 78.26 77.47 77.86 47.01 61.90 13.06 22.47

Simplified (all) 61.13 60.40 60.76 78.42 77.48 77.95 46.34 61.93 13.22 22.47

The initial word embeddings and Brown clusters are trained using Xinhua
portion of the Chinese Gigawords. We use 20-dimensional vector for cluster,
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Table 9: Results of our systems and other participating systems in TEXT corpus

System LP LR LF UP UR UF NLF NUF LM UM

IHS-RD-Belarus 68.71 68.46 68.59 82.56 82.26 82.41 50.57 64.58 16.82 40.12

OCLSP (lbpg) 63.34 67.89 65.54 76.73 82.24 79.39 51.75 63.21 11.49 27.60

OCLSP (lbpgs) 67.35 65.11 66.21 81.22 78.52 79.85 47.79 55.51 12.82 33.29

OCLSP (lbpg75) 66.43 66.43 66.38 79.97 79.85 79.91 57.51 63.87 12.56 32.09

OSU CHGCG 65.36 64.98 65.17 79.06 78.60 78.83 54.70 65.71 11.36 32.02

Tree+SVM (base) 71.17 70.00 70.58 83.96 82.58 83.26 49.69 68.56 20.31 44.81

List-based (base) 70.05 68.58 69.31 82.42 80.68 81.54 53.57 63.96 19.23 41.46

Simplified (base) 70.63 69.19 69.90 82.59 80.91 81.74 54.24 64.55 20.08 42.01

Tree+SVM (all) 71.35 70.19 70.76 84.23 82.87 83.54 49.17 68.69 20.37 45.10

List-based (all) 70.76 69.34 70.04 82.85 81.19 82.01 55.59 65.55 20.31 42.56

Simplified (all) 71.01 69.59 70.29 82.87 81.22 82.04 54.48 65.59 20.53 42.43

and 10 for valency and distance. The number of Brown clusters are set to 256.
The numbers of training samples for the SVM classifier in NEWS corpus and
TEXTBOOKS corpus are 1,869,819 (6,748 positive) and 248,716 (3,542 positive)
respectively. We use the liblinear toolkit [10] for training linear-kernel SVM
classifiers. We conduct experiments with baseline features alone and with all
features (baseline features, valency, distance and cluster) in both approaches.
Table 8 and Table 9 show the results of our systems and other participating
systems. The detailed description of other participating systems are presented
in [2].

3.3 Discussions

The labeled F1 scores of our three systems with baseline features are higher
than other participating systems. The first approach (Tree+SVM) has the best
performance in LF and UF but worst in NLF. However, its NUF is higher than
others. It is mainly due to the low precision of the SVM classifier, resulting from
the small amount of the positive training samples. Some of the labels only occur
very few times, making it difficult to predict the dependency labels of the extra
arcs precisely. However, in the second approach (dependency graph parser), with
lower NUF, we present much higher NLF scores, showing the high precision of
dependency label prediction. This is because the labeling part is trained with all
samples rather than non-local samples alone in dependency graph parser.

All of our systems perform better with richer non-local features. It is impor-
tant to notice that the NUF and NLF of the first approach do not benefit from
richer features which improve the non-local scores of the second approach a lot.
This is probably because richer features only help improve the performance of
tree parsing which do not provide non-local information. This is an advantage
of our dependency graph parser, since we can improve the performance of entire
structure prediction and non-local dependency prediction at the same time by
using richer features.
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With respect to non-local arcs, the list-based arc-eager algorithm works better
than simplified list-based algorithm in most situations. This is because we reduce
the number of transitions at the price of lengthening transition sequences in the
simplified list-based algorithm. Longer transition sequences make it harder to
discover non-local informations (NUF and NLF). However, smaller transition
set provides higher precision for the entire structure prediction (UF and LF).

Generally speaking, although the first approach (Tree+SVM) performs better
in LF and UF, it requires extra human knowledge to design preprocessing rules.
So for new dependency relation sets, we have to redesign the rules manually in the
first approach. Also its NLF is limited by the tree parser’s performance. However,
our dependency graph parser in the second approach can parse dependency
graphs completely automatically and does not require extra human knowledge.

4 Related Works

Transition-based dependency parsing [28, 20, 29, 19, 13] makes structural predic-
tions with a deterministic shift-reduce process. Most of these parsers are designed
to parse dependency trees. [23] presented a transition-based approach to DAG
parsing on the work of [20] on pseudo-projective transformations. Since their
parser can only parse projective dependency graphs, their approach requires pre-
process and post-process. [17] presented a DAG parser by extending the maxi-
mum spanning tree dependency framework of their early work in 2005, which is a
graph-based dependency parser. Other parsing approaches that produce depen-
dency graphs [6, 18, 22] are generally based on linguistically-motivated lexicalized
grammar formalisms, such as HPSG, CCG and LFG.

Since [12]’s first attempt to use neural networks in a broad-coverage Penn
Treebank parser, applying neural networks to dependency parsing and represent-
ing the states with dense embedding vectors has been more and more popular
[26, 24, 3, 31, 27]. Recently, [9] proposed a technique for learning representations
of parsing states in transition-based dependency parser with stack LSTM and
yielded state-of-the-art performance.

Semantic dependency parsing integrates dependency structure and semantic
information in the sentence based on dependency grammar [21]. [14] were the first
to use dependency grammar in semantic analysis. Then [7] proposed Stanford
typed dependencies representations. [15] [16] were the first to work on Chinese
semantic dependency, and have manually annotated a corpus in the scale of one
million words. HIT semantic dependency is established by Research Center for
Social Computing and Information Retrieval in Harbin Institute of Technology
in 2011. [8] refined the HIT dependency scheme with stronger linguistic theories,
yielding a dependency scheme with more clear hierarchy.

5 Conclusion

We present two transition-based approaches for DAG parsing, and studied two
kinds of transition set for the latter one. All of our systems yield significantly
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better LF than other participating systems in SemEval-2016 Task 9. We further
provide extensive analysis and show the advantages and disadvantages of both
approaches.

From the experiments, we can see that the performance of our graph parser
can be further improved by using richer features. Therefore, our approach is
expected to benefit from the recently proposed LSTM-based architectures [9].
We leave it to our future work.
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Appendix

Preprocessing rules used in our first approach:

• In a causative sentence, we remove the dependency arc between the fol-
lowing verb and the noun;
• For multi-head situation caused by dependency arc between a noun and a

pronoun, we remove this arc to eliminate the situation;
• For multi-head situation caused by reverse relation between a noun and a

verb, we remove this arc to eliminate the situation;
• For multi-head situation caused by possessor relation between two nouns,

we remove this arc to eliminate the situation.


