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Abstract. This paper investigates relations between word semantic den-
sity and word frequency. A distributed representations based word av-
erage similarity is defined as the measure of word semantic density. We
find that the average similarities of low frequency words are always big-
ger than that of high frequency words, when the frequency approaches to
400 around, the average similarity tends to stable. The finding keeps cor-
rect with changes of the size of training corpus, dimension of distributed
representations and number of negative samples in skip-gram model. It
also keeps on 17 different languages. Basing on the finding, we propose
a pseudo context skip-gram model, which makes use of context words
of semantic nearest neighbors of target words. Experiment results show
our model achieves significant performance improvements in both word
similarity and analogy tasks.
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1 Introduction

Representation of word meaning has long been a fundamental task in natural
language processing. Traditional methods treat each word a symbol. Distribu-
tional representation [20,13,1] represented a word by its context vector, which is
high-dimensional and sparse. Distributed representations (i.e. word embeddings)
encode words as low-dimensional real-valued vectors. Lots of models, including
Collobert and Weston embeddings (C&W) [6], HLBL [17], word2vec [15] and
GloVe [18] etc, have been proposed for learning word embeddings. Word embed-
dings have been widely used in language modeling [2], NER [21], parsing [6] and
some other natural language processing tasks.

Meanwhile, there was an extensive work on revealing the properties of dis-
tributed representations. [11] demonstrated that skip-gram negative sampling
(SGNS) is an implicit weighted matrix factorization of the shifted point mutual
information matrix. [12] pointed out that SGNS is an explicit matrix factoriza-
tion of of the words co-occurrence matrix.

Ideally, the vector space spanned by word embeddings is mainly driven by
semantics of words [7]. And the frequency of a word should not be an important
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parameter. However, [19] found that word embeddings do contain frequency
information, frequency is an important factor on word encoding. [21] evaluated
Brown clusters based representations, C&W and HLBL word embeddings on
NER task. Experiments showed that most of NER errors are made on words
with low frequencies. Brown clusters based representations outperform other
distributed representations on low frequency words.

Recently, some models have been proposed to improve embeddings for low
frequency words. By exploiting the internal structures of Chinese words, [5] used
Chinese characters as features for words with different frequencies. [3] made use
of an alphabet based n-gram to improve the embeddings of low frequency words
for morphologically rich languages. In generally, these models exploit features
that can be shared among different words, thus low frequency word can be
enhanced by these features.

However, there are still lots of questions remained for further exploring, such
as what is the problem on embeddings of low frequency words? How low fre-
quency hurt embeddings of words? Answers to these questions might provide
a principled approach to improve the quality of embeddings for low frequency
words.

This paper investigates some of the aforementioned questions. We start the
investigation from word semantic density. A distributed representation based
word average similarity is firstly defined as a measure for word semantic density.
We then find an interesting phenomenon: low-frequency words always have bigger
average similarities than those words with high frequency. Further experimental
results show that there is a stable relation between average similarities and word
frequency. The relation show stability under the different parameters of skip-
gram model as well as different languages. Basing on the finding, we propose a
pseudo context skip-gram model, which makes used of context words of semantic
nearest neighbors of target words. Unlike the feature sharing approch [5,3], this
strategy is not language dependent and can be applied in conjunction with other
methods simultaneously. Experiment results show our model achieves significant
performance improvements in both word similarity and analogy tasks.

2 The Empirical Relation

2.1 Semantic Nearest-neighbors

Let C be a corpus of a language,D is the vocabulary of C,D = {w1, ...wi, ...w|D|}.
Let Vwi

be the distributed representation of word wi, i = 1, ..., |D|. We denote
the similarity between wi and wj as

sim(wi, wj) = cos sim(Vwi
, Vwj

) (1)

Where cos sim denote cosine similarity.
A 154MB English corpus is used to train the skip-gram model1 by word2vec2

with its default parameter setting. The similarities between all words in D are

1 CBOW has similar results. We therefore only give the results of skip-gram.
2 https://code.google.com/archive/p/word2vec/
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then computed by equation (1). Table 1 gives top 10 nearest-neighbors of three
words. The three words have different frequencies in the corpus. We can find
that the similarities between top 10 nearest-neighbors and word “azeotrope”
with frequency=20 are bigger than those of word “invest” with frequency=200,
the similarities between top 10 nearest-neighbors and word “invest” are higher
than those of word “manual” with frequency=500. i.e., low frequency words are
more similar to their nearest-neighbors than that of words with high frequency.

Word Frequency Top 10 nearest-neighbors (similarity)

azeotrope 20
D2O(0.888) eutectic(0.887) A1c(0.887) HDO(0.879)
azeotropic(0.875) miscibility(0.873) COF(0.870)
hydrophobicity(0.870) Saturation(0.870) SWNT(0.866)

invest 200
recoup(0.783) investing(0.763) repay(0.747) privatize(0.743)
invested(0.734) insure(0.720) allocate(0.719) innovate(0.717)
exchequer(0.715) approvals(0.715)

manual 500
bookkeeping(0.692) computerized(0.688) pantograph(0.666)
Braille(0.664) manuals(0.664) typesetting(0.657) copying(0.643)
QWERTY(0.635) automatic(0.627) Procedural(0.624)

Table 1. Three words with their frequencies and top 10 nearest neighbors are shown.
Those words are chosen by frequency from low, median and high. The similarity of
each neighbor in top 10 nearest neighbors is also given.

Are these some special cases? Or is there a universal law behind? We further
inspect it on all words in vocabulary.

2.2 Semantic Density

Let the semantic density of wi be the average similarity between its word em-
bedding and all other words in D, it is denoted by avg sim(wi) and calculated
by equation (2).

avg sim(wi) =
1

|D|

∑

wj∈D

sim(wi, wj) (2)

Let fwi
be the frequency of word wi, we then define the semantic density

of the words with frequency=K. Given a frequency K, M words are uniformly
sampled from the set of all words with frequency=K (For simplification, M words
instead of all words are sampled. We find M = 50 is enough in experiments).
Let SK denotes the set of these M words, AvgSK denotes average similarity of
words with frequency=K, is then calculated by (3)

AvgSK =
1

M

∑

wi∈SK

avg sim(wi) (3)

AvgSK is computed for K range from 5 to 1000 in a 154MB English corpus.
Figure 1(a) is the curve of AvgSK about K. As depicted in the figure, when
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K increases, AvgSK declines, i.e., low frequency words have larger AvgSK than
those with high frequency. low frequency words are closer to other words in
average, they have bigger semantic density. More frequent words have lower
AvgSK and lower semantic density. But when frequency reaches at 400 around,
the curve tends to stable. i.e., words with big enough frequencies will have stable
semantic density.

In order to inspect the change rate of the average similarity , we fit the K-
AvgSK by a polynomial function, we find that a 5th order polynomial function
y = [−2.99, 8.63,−9.38, 4.75,−1.14, 3.88]T [(10−3x)5,
(10−3x)4, (10−3x)3, (10−3x)2, 10−3x, 1(10−3x)5] fits the curve well, the polyno-
mial function is also illustrated in Figure 1(a). We then compute the gradient of
the polynomial function. The gradient curve is presented in Figure 1(b). These
two figures demonstrate that as K increases, AvgSK decreases, but the rate of
change continues to decline, when frequency is near about 400, the similarity
reaches a stable value.
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Fig. 1. The average similarity curve and its gradient curve are shown. Left: The average
similarity curve on the 154MB english corpus (En-154M-AA) and its polynomial fitting
curve are shown. Right: The gradient of the polynomial fitting curve are given.

3 Invariance of the Relation

This section investigates the invariance of our proposed relation. We figure out
if this relation holds for various settings for training word embeddings, including
several important hyper-parameters in word embeddings learning model (skip-
gram is considered in this paper) and languages. Details are described as follows.

– Dose this relation hold when trained on different but sufficiently large corpus
size?

– Dose this relation hold with different dimensions?
– Dose this relation hold with different languages?
– Dose this relation hold with other hyper-parameters?
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3.1 Corpus Size

Three Chinese corpora with the size of 300MB, 5.6GB and 8.4GB are used
for training word embeddings respectively. The K-AvgSK curves for different
corpora are shown in Figure 2(a). They have similar shapes but with different
average similarity. Word embeddings trained on a large corpus has a lower av-
erage similarity than that on a small corpus, suggest that the word embeddings
trained on a big corpus are more distinguishable than that on a small corpus. A
word will become more distinguishable when it occurs more frequently. However,
according to Zipf’s law [24], even with a large corpus the low frequency words
still exists. So do large semantic density of words. And the gradients of all curves
tend to be zeroes when frequency nearly arrives at 400.

3.2 Dimension of Word Embeddings

Word embeddings with different dimensions from 100 to 1,000 (by step size of
100) are obtained. K-AvgSK curves for different dimensions are illustrated in
Figure 2(b). The legend “zh 100” means that the language is Chinese and the
dimension is 100.

The figure shows that the shape of curves does not significantly change with
the dimension. But embeddings with a larger dimension has lower average sim-
ilarity and semantic density. That comply with the intuition that as the dimen-
sion grows, word embeddings become more sparse. As with other situations,
the gradients of different curves also tends to zeroes when the frequency nearly
approaches to 400.

3.3 Different Languages

So far, we have investigated the hypothesis on English and Chinese. How about
other languages? We train word embeddings on seventeen languages. All corpora
for different languages are available in wikipedia3. Two different English corpora
(En and En full) are used in this experiment.

The K-AvgSK curves for seventeen languages are presented in Figure 2(c).
The curves for all languages are similar. Sepcifically, they go down with the
increasing of the frequency. And approach to stable values when the frequency
equals 400 around. Different languages have different stable values. Among all
those languages, Dutch has the biggest stable value, while French has the smallest
one. The gradient of all K-AvgSK curves also tend to 0 when frequency is near
400. From this figure, we draw the same conclusion as above that gradients of
all K-AvgSK curves tend to be zeroes when the frequency is near 400. This
implies that the relations between the frequency K and AvgSK hold. And 400
is the boundary of low frequency words and the other words for all seventeen
languages.

3 https://dumps.wikimedia.org/backup-index.html
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Fig. 2. Average similarities impacted by three factors, corpus size, embeddings dimen-
sion and languages are shown, respectively. (a) Average similarities with frequencies
in three different sizes of corpora. (b) Average similarities with frequencies in different
embeddings dimensions from 100 to 1,000 with the step size of 100. (c) Average sim-
ilarities for seventeen languages are reported. and each language is represented by its
ISO code.

3.4 General Discussion

Except for three parameters above, we have verified that the hypothesis is also
invariant for other parameters, such as number of negative samples, rejection
threshold of models. Due to the space limit we do not present here.

Our hypothesis, gives hints on how to improving word embeddings, especially
for low frequency words. We will propose an efficient way in next section.

On the other hand, to explore reasons behind the linguistic phenomenon is
also important. Polysemy might be a part explanation for the phenomenon. Since
frequent words normally be more polysemous, therefore might have lower average
similaries than those of low frequency words. Nevertheless, the phenomenon gives
us more information. The invariance on different model parameters and different
languages, decrease of K-AvgSk curves stops when frequency beyond 400, all
these cannot be simply explained by polysemy.

4 Pseudo-Context Word Embedding

To improving word embeddings, we propose a strategy called “pseudo context” to
get much more training data for low frequency words by making use of semantic
nearest-neighbors of them. The strategy can be easily incorporated into various
existing word embedding models. In this paper, we take skip-gram as an example
to introduce the pseudo context based skip-gram (PCSG).

Let corpus C = w1, w2, ..., wN be a sequence of words. V is the vocabulary
of all words in C. The objective function of skip-gram model is to maximize the
log-likelihood of a center word wn predicting its context word. The equation is
shown in 4).

L =
N∑

n=0

∑

c∈Cn

logP (wc|wn) (4)
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where the context Cn = n− L, ..., n− 1, ..., n+ 1, ...n+ L is the set of index
of words within the sized L window of target word wn. Evaluating the condi-
tional probability P (wc|wn) is computationally expensive, which involves the
normalized probability of wn predicting wc over all other words in the vocab-
ulary. Thus, skip-gram model employs negative sampling to approximate this
probability. Its objective function is as follows,

L =

N∑

n=0

∑

c∈Cn

l(w, c) (5)

l(w, c) = log
1

1 + e−Vc·Vw
+ k

∑

c′∼PD

1

1 + eVc′ ·Vw
(6)

where Vw is the word vector of word w, and c is the word in the context
of w. c′ is a sample drawn form the distribution of negative words PD. k is the
number of negative samples, which is a trade-of between approximating accuracy
and computational complexity.

In PCSG, different objective functions are used for high frequency words and
low frequency words. A word is took as low frequency when its frequency is lower
than a given threshold T . Objective function for high frequency words remain
as in (5). For low frequency word wm, a different object function is defined.
We first construct a similar words set Sm for wm. The set Sm consists of top N
semantic nearest neighbor words of wm. For any word ws in this set, we take
context words of it as context words of wm as well. For a context word wc of ws,
it may not be a true context word of wm. However, since the two words ws and
wm are similar, they tend to have similar context according to distributional
hypothesis [10]. We call wc as a pseudo context word of wm. During the
training, when wm is updated, a word ws from Sm is uniformly sampled, the
objective is to maximize the probability of ws predicting wc. Equation (4) is
therefore replaced by equation (7).

L =

N∑

n=0

∑

c∈Cn,s∈Sn

logP (wc|wn) + logP (wc|ws) (7)

Negative sampling method can also be applied. The corresponding objective
function for low frequency word is (8).

L =

N∑

n=0

∑

c∈Cn,s∈Sn

l(w, c) + l(s, c) (8)

In which the two terms l(w, c) and l(s, c) are defined in equation (6).
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5 Experiments

Implementation details.Our baselines are skip-gram (SG) model from word2vec
program4 and CWE+P model from CWE program5. Wikipedia corpus is used
to train word vector for different languages. All the models are trained with
5 negative samples with rejection threshold 10−3 and keep words appearing at
least 5 times. The dimension of word vectors is set to 100. By introducing pseudo
context for low frequency words, our method increases the computational com-
plexity by approximately 30% in English corpus. However, our implementation
is well optimized, about 1.7 times faster than the word2vec implementation of
skip-gram. Our code will be available online6.

We compare the performance of different models on two word based tasks,
word relatedness and analogy reasoning.

English Chinese
Semantic Syntactic Semantic

total capital-
common-
countries

capital-
world

currency city-
in-
state

family total total capital-
common-
countries

city-
in-
state

family

SG 38.29 64.29 41.75 2.94 15.38 72.22 54.25 67.98 70.33 76.57 48.48
PCSG45.59 73.81 53.33 2.94 20.84 63.40 54.54 69.95 70.99 80.57 52.27
CWE / / / / / / / 66.01 67.03 78.29 46.21

∆ 7.30 9.52 11.58 0 5.46 -8.82 0.29 1.96 0.66 2.28 3.79

Table 2. Evaluation accuracies(×100) on analogy task. For semantic questions, we
report the results on different sections and the total dataset.

Word analogy task. An analogy question is like “France is to Paris as Italy
to X”. In this example, the word X is predicted by finding a word whose vector
has the highest cosine similarity with vector V (France)−V (Italy)+V (Paris).
Here “Rome” is the correct answer.

Two datasets, google analogy dataset [16] on English and the one from [5]
on Chinese are used in our exmperiments. Analogy questions in English dataset
are divided into semantic and syntactic questions. Semantic questions contain
five sections. The example given above is from the “capital-common-countries”
section of semantic question. An example of syntactic question is “free is to freely
as usual is to X”, where the answer is “usually”. Chinese does not contain the
same morphological information, so only semantic question is provided, which
contains three sections.

Accuracies for sections and for the total dataset are reported in Table 2.
In Chinese, besides SG model, CWE model [5] is also used for comparison. By

4 https://code.google.com/archive/p/word2vec/
5 https://github.com/Leonard-Xu/CWE
6 https://github.com/mklf/PCWE
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training word and character embeddings together, CWE model also uses the in-
formation of Chinese characters. The results are reported in Table 2. We see that
(1) PCSG substantially outperforms the other models on semantic questions in
both English and Chinese datasets. (2) There is minor change on performances
of syntactic questions. We infer the reason is that nearest neighbor words in Sn

are semantically similar words of wn, which have nearly no syntactic informa-
tion. If syntactic information can be incorporated in the nearest neighbor word
selection phase, for example, filtering out the subset of words with same prefix or
suffix in Sn in morphologically rich languages, syntactic performance may also
be improved. The detailed implementation is left for future work.

English Chinese German

WS353
RW MEN PKU500

C240 C297 ZG222 Gur350
all < 400 all < 400 all < 400

SG 67.67 39.19 31.91 62.50 53.91 35.50 43.67 54.65 54.74 39.48 61.39
PCSG 69.36 42.59 36.40 65.22 57.33 36.86 48.31 56.85 57.03 44.80 62.71

Table 3. Evaluation results on various datasets (ρ × 100). For datasets RW, MEN
and PKU500, the correlation coefficient only on low frequency (< 400) words are also
measured.

Word relatedness task. This task contains a set of word pairs. The cosine
distance of word vectors is computed to score the similarity between a pair of
word. Then the spearman correlation coefficient ρ between scores by vector of
words and human judgments are then obtained. A higher coefficient for word
vectors means a better performance.

Several publicly available word similarity datasets in three languages are
used. They consist of three English datasets,WordSim353 (WS353) [8], RareWords
(RW) [14], MEN [4], three Chinese datasets PKU500 [22], CWE240(C240),
CWE297(C297) [5] and two German datasets ZG222 [9], Gur350 [23]. Among
those datasets, RW, MEN and PKU500 have 183, 732, 47 low frequency (fre-
quency < 400) word pairs respectively. Whereas the other datasets contain less
than 20 low frequency word pairs.

The spearman correlation coefficient ρ for different models and different
datasets are shown in Table 3. For datasets RW, MEN and PKU500, the cor-
relation coefficient only on low frequency words are also measured. We can find
that (1) PCSG outperforms SG on all languages and datasets by a margin of
2% 5%. (2) More improvements are achieved for low frequency words on RW,
MEN and PKU500. (3) The pseudo context strategy can be applied to di erent
languages. Evidently, introducing pseudo context helps to build better word vec-
tors, especially for low frequency words. The results show word vectors trained
by PCSG actually include more semantic information by making use of pseudo
context.
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6 Conclusion and Future Works

One of the goals of computational linguistics is to find interesting linguistic
phenomena and reveal their natures in a computational way.

This paper finds some interesting linguistic phenomena based on distributed
representations of words. A hypothesis on the relation between distributed rep-
resentation based average similarities and the frequency of words is proposed.
That is low frequency words have larger average similarities. As the frequency
increases, the average similarity decreases. When the frequency reaches to 400
around, the average similarity becomes stable. Experimental results show that
the relation holds on word embeddings trained by different sizes of corpora and
parameter settings. Also, it holds on different languages as well.

Basing on those findings, we propose a pseudo context strategy for low-
frequent words. By applying this strategy to skip-gram model, we achieve sig-
nificant improvement on both word relateness and analogy tasks, especially on
low-frequent words.

Acknowledgments. This paper is supported by 111 Project (No. B08004)NSFC
(No.61273365) , Beijing Advanced Innovation Center for Imaging Technology,
Engineering Research Center of Information Networks of MOE, and ZTE.

References

1. Baroni, M., Lenci, A.: Distributional memory: A general framework for corpus-based
semantics. Computational Linguistics 36(4), 673–721 (2010)

2. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. Journal of machine learning research 3(Feb), 1137–1155 (2003)

3. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. arXiv preprint arXiv:1607.04606 (2016)

4. Bruni, E., Boleda, G., Baroni, M., Tran, N.K.: Distributional semantics in techni-
color. In: Proceedings of the 50th Annual Meeting of the Association for Computa-
tional Linguistics: Long Papers-Volume 1. pp. 136–145. Association for Computa-
tional Linguistics (2012)

5. Chen, X., Xu, L., Liu, Z., Sun, M., Luan, H.: Joint learning of character and word
embeddings. In: Proceedings of IJCAI. pp. 1236–1242 (2015)

6. Collobert, R., Weston, J.: A unified architecture for natural language processing:
Deep neural networks with multitask learning. In: Proceedings of the 25th interna-
tional conference on Machine learning. pp. 160–167. ACM (2008)

7. Faruqui, M., Tsvetkov, Y., Rastogi, P., Dyer, C.: Problems with evaluation of word
embeddings using word similarity tasks. arXiv preprint arXiv:1605.02276 (2016)

8. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G.,
Ruppin, E.: Placing search in context: The concept revisited. In: Proceedings of the
10th international conference on World Wide Web. pp. 406–414. ACM (2001)

9. Gurevych, I.: Using the structure of a conceptual network in computing semantic
relatedness. In: International Conference on Natural Language Processing. pp. 767–
778. Springer (2005)

10. Harris, Z.S.: Distributional structure. Word 10(2-3), 146–162 (1954)



Improving Word Embeddings for Low Frequency Words by Pseudo Contexts 11

11. Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization.
In: Advances in neural information processing systems. pp. 2177–2185 (2014)

12. Li, Y., Xu, L., Tian, F., Jiang, L., Zhong, X., Chen, E.: Word embedding revis-
ited: A new representation learning and explicit matrix factorization perspective.
In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI. pp. 25–31 (2015)

13. Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical
co-occurrence. Behavior Research Methods, Instruments, & Computers 28(2), 203–
208 (1996)

14. Luong, T., Socher, R., Manning, C.D.: Better word representations with recursive
neural networks for morphology. In: CoNLL. pp. 104–113 (2013)

15. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

16. Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space word
representations. In: Hlt-naacl. vol. 13, pp. 746–751 (2013)

17. Mnih, A., Hinton, G.E.: A scalable hierarchical distributed language model. In:
Advances in neural information processing systems. pp. 1081–1088 (2009)

18. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: EMNLP. vol. 14, pp. 1532–1543 (2014)

19. Schnabel, T., Labutov, I., Mimno, D., Joachims, T.: Evaluation methods for un-
supervised word embeddings. In: Proc. of EMNLP (2015)

20. Schutze, H.: Dimensions of meaning. In: Supercomputing’92., Proceedings. pp.
787–796. IEEE (1992)

21. Turian, J., Ratinov, L., Bengio, Y.: Word representations: a simple and general
method for semi-supervised learning. In: Proceedings of the 48th annual meeting of
the association for computational linguistics. pp. 384–394. Association for Compu-
tational Linguistics (2010)

22. Wu, Y., Li, W.: Overview of the nlpcc-iccpol 2016 shared task: Chinese word
similarity measurement. In: International Conference on Computer Processing of
Oriental Languages. pp. 828–839. Springer (2016)

23. Zesch, T., Gurevych, I.: Automatically creating datasets for measures of semantic
relatedness. In: Proceedings of the Workshop on Linguistic Distances. pp. 16–24.
Association for Computational Linguistics (2006)

24. Zipf, G.K.: Human behavior and the principle of least effort (1950)


	Improving word embeddings for low frequency words by pseudo contexts
	Introduction
	The Empirical Relation
	Semantic Nearest-neighbors
	Semantic Density

	Invariance of the Relation
	Corpus Size
	Dimension of Word Embeddings
	Different Languages
	General Discussion

	Pseudo-Context Word Embedding
	Experiments
	Conclusion and Future Works


