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Abstract. Recently neural network models are widely applied in text-matching 
tasks like community-based question answering (cQA). The strong generaliza-
tion power of neural networks enables these methods to find texts with similar 
topics but miss detailed matching information. However, as proven by traditional 
methods, the explicit lexical matching knowledge is important for effective an-
swer retrieval. In this paper, we propose an ExMaLSTM model to incorporate 
the explicit matching knowledge into the long short-term memory (LSTM) neural 
network. We extract explicit lexical matching features with prior knowledge and 
then add them to the local representations of questions. We summarize the overall 
matching status by using a bi-directional LSTM. The final relevance score is cal-
culated using a gate network, which can dynamically assign appropriate weights 
to the explicit matching score and the implicit relevance score. We conduct ex-
tensive experiments for answer retrieval in a cQA dataset. The results show that 
our proposed ExMaLSTM model outperforms both the traditional methods and 
various state-of-the-art neural network models significantly. 
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1 Introduction 

The community-based question answering (cQA) attracts considerable attention in re-
cent years. Traditional question answering systems, driven by evaluations such as the 
Text REtrieval Conference (TREC), generally aim to retrieve short and factoid answers. 
But questions from cQA services tend to be more subjective and complex, and the an-
swers are often in a causal style, including both fact description and subjective opinions. 
So the answer retrieval task in cQA is more challenging. 

Traditional methods on cQA retrieval are mainly based on surface lexical matching, 
which suffer from the severe lexical gap problem. Recently, researchers have proposed 
various neural networks and semantic embedding based methods to overcome this 
problem (for example, Hu et al., 2014; Palangi et al., 2015; Zhou et al., 2015; Qiu and 
Huang, 2015), which take advantage of the strong generalization power of neural net-
works. Generally speaking, these methods try to dive into the latent embedding space 
and then calculate the relevance score to find the pairs which are mostly like to match 
each other. 
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However, there are limitations for most of previous neural network methods in prac-
tice. First, a large amount of training data is required to learn appropriate parameters, 
which is unrealistic for some specified domains. Second, there exist out of vocabulary 
(OOV) words and unseen phrases, and it is hard to embed their latent semantics. Third, 
the strong generalization power enables these methods to find texts with similar topics, 
but they may miss or obscure the detailed matching information, so underestimate the 
relevance of those text spans with explicitly matched points. 

Table 1 shows an example. The basic neural network model of this paper success-
fully captures the "delicious food" topic but loses the explicitly matched key point 
"spicy hot pot", which is rare or even unseen in the training data but is the semantic 
focus of this question. We can see that the traditional method of direct lexical matching 
still has its value. 

Table 1. An example of a question and its related answers. The unexpected answer is returned 
by the basic LSTM model of this paper; the expected answer is the right answer. 

Question: I want to know where is the most delicious spicy hot pot in Beijing? 
Unexpected Answer: Beijing is the culinary capital where roasted duck, sauteed noodles 

with vegetables and other local snacks are easy available. Just please walk on the Wangfujing 
Snack Street to spend happy time with various delicious foods. The address is …… 

Expected Answer: On a cold winter day, you may like to have something hot with your 
family. Then the spicy hot pot is perhaps the best choice for you. Now let's introduce the most 
famous hot pots in Beijing below …… 

In this paper, we focus on exploiting such explicit matching information in question-
answer pairs for answer retrieval. We propose an ExMaLSTM model, which extends 
the traditional LSTM model as follows. 

 We extract explicit lexical matching features of question-answer pairs with prior 
knowledge, by using rich language resources. 

 We incorporate these explicit matching features into the original word vector for 
each word in the question. The overall explicit matching status is summarized by 
a bi-directional LSTM, and then the explicit matching score is calculated via the 
summarized representation. 

 We calculate the final relevance score by using a gate network, which can dynam-
ically assign different weights to the explicit matching score and the implicit rel-
evance score. The implicit relevance score is calculated by the basic LSTM model 
of this paper. 

We conduct extensive experiments for answer retrieval in a Chinese cQA dataset. 
The experimental results show that our extended ExMaLSTM model outperforms var-
ious state-of-the-art neural network models significantly. It can well capture the explicit 
lexical matching information and assign appropriate weights to explicit and implicit 
scores. 
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2 Related work 

There are a lot of researches to utilize neural network based models in cQA retrieval. 
They can be clustered to the following two groups. 

The first idea is to embed the question and answer separately into latent semantic 
spaces, and then calculate the implicit relevance score with embedded vectors. Studies 
include bag-of-words based embedding models (Wang et al., 2011), recursive neural 
network model (RNN) (Iyyer et al., 2014), convolutional neural network (CNN) model 
(Hu et al., 2014), long short-term memory network model (Palangi et al.,2015) and 
combined model (Zhou et al., 2015). Qiu and Hunag (2015) implemented a tensor trans-
formation layer on CNN based embeddings to capture the interactions between question 
and answer more effectively. 

The second idea is to conduct matching process with pairs of local embeddings and 
then calculate the overall relevance score. Works include enhanced lexical model (Yih 
et al., 2013), DeepMatch (Lu and Li, 2013). Pang et al. (2016) calculated word similar-
ity matrix from pairs of words between question and answer, and then built hierarchical 
convolution layers on it. Yin and Schutze (2015) proposed MultiGranCNN, which in-
tegrates multiple matching models with different levels of granularity. Wan et al. (2016) 
proposed Multiple Positional Sentence Representation (MPSR), which uses LSTM and 
interactive tensor to capture matching points with positional local context. The differ-
ence with our work is that they still depend on embeddings of local information, thus 
cannot fully capture the explicit matching information of question-answer pairs. 

Some other works try to incorporate non-textual information into the basic neural 
cQA model. Hu et al. (2013) used a deep belief network (DBN) to learn joint represen-
tations for textual features and non-textual features. Bordes et al. (2014) learnt joint 
embeddings of words and knowledge base constituents with subgraph embedding 
method. 

To the best of our knowledge, most of the neural network models in cQA retrieval 
pay little attention to the explicit lexical matching information of text pairs. Wang and 
Nyberg (2015) simply combined their LSTM neural network model with the exact key-
word matching score, but their method is quite different from our work in the following 
aspects. 1) They only extract the cardinal numbers and proper nouns to do keyword 
matching, while our work extracts plenty of lexical matching information. 2) They use 
the traditional Okapi BM25 algorithm to calculate the keywords matching score, while 
we employ a bi-directional LSTM network to predict the explicit matching status. 3) 
They use an external gradient boosting decision tree (GBDT) method to combine fea-
tures, while we exploit a gate network to dynamically assign different importance 
weights to the implicit relevance score and explicit matching score. 

3 The Basic model 

We first describe the basic neural network model adopted in this paper for question-
answer relevance calculation, which is depicted in Figure 1. We utilize a bi-directional 
LSTM to represent questions, and propose a Sent-LDA model to represent answers. 
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Then a three-way tensor is employed to model the interactions of question-answer pairs. 
Finally, a multilayer perception (MLP) is utilized to calculate the relevance score. 
 

three-way tensor transformation

Relevance score

Question text

Max pooling

Mlp

Bi-LSTM

Answer text

Sent-LDA

 
 

Fig. 1. The basic network model of this paper 

3.1 Question Representation 

Like Palangi et al. (2015), we use the bi-directional LSTM to embed questions into 
latent semantic representations, which can effectively capture the long-range depend-
encies of context information. We use max pooling through time to extract the final 
fixed-length representation for the question.  

3.2 Answer Representation 

We can also use LSTM to generate latent representations for answers. However, an-
swers in a cQA forum often consist of multiple sentences and are much longer than 
questions, which makes the training process very time consuming. So, we utilize a sen-
tence-level LDA (Sent-LDA), inspired by phrase-LDA (Kishky et al., 2014), to model 
sentence level information. It runs fast while achieves comparable results with neural 
based representations. 

The Sent-LDA is the same with the classical LDA except that all words within a 
sentence are constrained to a unique topic. We treat each answer as a document and 
sample the topic assignments on it. Each sentence in the answer will get a topic that is 
consistent with the topic its words are assigned. This leads to a "bag of sentence topic" 
representation for multi-sentence answers, which can capture high level information 
rather than individual words. In our experiment, the sentences are segmented with Chi-
nese punctuations (including comma), and the number of topic is set to 200. 
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3.3 Tensor Relevance Model 

To model the relevance of question-answer pairs, we use a three-way tensor to trans-
form the representations of question and answer into a semantic matching representa-
tion, like Qiu and Huang (2015). The representations of a question and its related an-
swer are separately mapped to the hidden layers with a nonlinear transformation: 

( )q h hh W q b  
                                                                                        (1) 

( )a a ah W a b                                                                                         (2) 

A new hidden layer tensorh is added to model the interaction between question and 

answer via a three-way tensor tensorW : 

( )T
tensor a tensor qh h W h                                                                                (3) 

where T  denotes tensor transformation. 

We then use a logistic regression layer to calculate the final score: 

( )imp output tensor outputscore W h b                                                                  (4) 

where 
outputW  and 

outputb  are parameters of the regression layer. 

4 The Extended Model ExMaLSTM 

In cQA, the most appropriate answer to a question often explicitly mentions some key 
points of the question. However, as discussed above, we may lose this detailed match-
ing information when embedding texts into the latent semantic space by using tradi-
tional neural network models. To overcome this limitation, we extend the basic LSTM 
neural network model (as shown in Figure 1) to incorporate the explicit matching 
knowledge, and then calculate the question-answer relevance by combining both im-
plicit relevance score and explicit matching score in a dynamic fashion. Our extended 
model ExMaLSTM is depicted in Figure 2, where the notation 1, 2 and 3 are related to 
the following subsections 4.1, 4.2 and 4.3, respectively. 

4.1 Extracting Explicit Matching Features 

For each word in the question, we introduce the following explicit lexical matching 
features. These features describe how well each question word is explicitly matched in 
the answer as a possible key point. 

In traditional lexical matching methods, only exact word matching features are used. 
In this paper, we extract explicit matching information from nine dimensions, by using 
external resources like synonym dictionary and word vectors pre-trained on a large cor-
pus. So our explicit matching features have stronger power to capture the matching 
information in question-answer pairs. 
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Fig. 2. Our extended ExMaLSTM model. The yellow parts denote our extensions with explicit 
matching knowledge, compared with the basic LSTM model in Figure 1. 

 word occurrence. A boolean feature denoting whether the word occurs in the 
answer. 

 word occurrence count. The number of occurrences of the word occurring in the 
answer. 

 synonym occurrence. A boolean feature denoting whether any synonym of the 
word occurs in the answer. We use HIT-CIR Tongyici Cilin as our synonym dic-
tionary. 

 synonym occurrence count. The number of occurrences of synonyms occurring 
in the answer. 

 occurrence in the head. A boolean feature denoting whether the word or its syn-
onym occurs in the first sentence of the answer. 

 word2vec similarity. The similarity score of the most similar word in the answer, 
which is calculated by cosine similarity between word vectors. 

 tf-idf score. The tf-idf score of the word if any synonym or the word itself occurs 
in the answer. 

 content word. A boolean feature denoting whether the word that occurs in the 
answer is a content word. 

 entity word. A boolean feature denoting whether the word that occurs in the an-
swer is an entity word (with POS tag NR, NT or NS). 
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4.2 Calculating Explicit Matching Score 

For each word in the question, we form the new input representation of the LSTM layer 
by appending these lexical matching features to the original word vector. Then a bi-

directional LSTM network is used to generate the semantic presentation qh  of a ques-

tion text. By summarizing both the distributed semantic representation and the match-

ing features of each word, the output of the LSTM layer qh  now captures two aspects 

of information: 

1) The latent semantics of the question itself; 
2) The overall status about how well the key points of the question are matched 

explicitly in the answer. 
Then the explicit matching score is calculated by adding a nonlinear transformation 

layer on the hidden representation qh , and then a logistic layer is employed to get the 

final output: 
( ( ) )exp exp q expscore W L h b                                                                    (5) 

where L  denotes the nonlinear transformation layer, expW  and expb  denote the pa-

rameters of the regression layer. 
In our model, the matching features are processed sequentially, thus the consecu-

tively matched substrings can be extracted just like the Maximum Common Substring 
(MCS) method. Then they are treated as a whole to estimate the matching score. For 
example in Table 2, the Chinese word "spicy hot pot" is wrongly segmented into three 
words "spicy", "hot" and "pot", but our model can still capture the explicit matching 
information of this word by processing the consecutively matched fragments as a 
whole. So our model is robust to Chinese word segmentation errors, which is a non-
trivial task for Chinese language processing in web texts like cQA. 

Table 2. An example of a question-answer pair. The wrongly segmented fragments [spicy-hot-
pot] are extracted by our model as a whole to estimate the matching score. 

Question: I want to know where is the most delicious [spicy-hot-pot] in Beijing? 
Expected Answer: On a cold winter day, you may like to have something hot with your 
family. Then the [spicy-hot-pot] is perhaps the best choice for you. Now let's introduce the 
most famous [hot-pots] in Beijing below ... 

4.3 Combining Implicit and Explicit Scores 

We calculate the final relevance score by combing both the implicit relevance score and 
the explicit matching score to take advantage of both aspects of information. 

. (1 ).imp expscore g score g score                                                             (6) 

Instead of using a fixed weight factor, we propose to utilize a dynamic scoring strat-
egy that can dynamically assign appropriate weights to two relevance scores: 



8 

( [ , ] )sel q a selg W h h b                                                                           (7) 

Here, g is calculated via a gate network, which dynamically estimates the importance 

of two relevance scores based on the current hidden states. It avoids over-estimating or 
under-estimating the final score due to the arbitrary weight setting, since the question 
and answer with few matching words can be highly relevant, and vice versa, the ques-
tion and answer with many common words may talk about different things. 

5 Experiment 

5.1 Experiment setup 

The dataset comes from Baidu Zhidao, which is one of the most popular cQA services 
in China. We have crawled 180,000 question-answer pairs under the "travelling" topic. 
The data was pre-processed with Chinese word segmentation and part of speech tagging 
using ICTCLAS (Zhang et al., 2003). We also trained a CRF-based entity recognizer 
to annotate the places with the label NS. We removed the pairs which have too short 
answer or question (<=5 words) or consist of only an URL string. Finally, there are 
160,000 question-answer pairs remained. We picked 5,000 pairs for testing, 5,000 for 
validation, and the remaining 150,000 for training. 

In our experiment, the word embeddings are pretrained using word2vec (Mikolov et 
al., 2013) on Baidu Zhidao corpus, including the whole data of 160,000 question-an-
swer pairs. The dimension is set to 200. The hyper-parameters in the neural network 
are tuned using the validation data, and Table 3 shows these settings. We employ a 
large margin objective for model training, and the objective loss function is optimized 
using AdaGrad. 

Table 3. Hyper-parameters in the neural network 
 
 
 
 
 
 
 
 

 

5.2 Baselines 

We conduct extensive experiments on the dataset, including traditional bag-of-words 
methods and various neural network models. 

 Cosine similarity. Calculate cosine similarity between vectors of question and 
answer using tf-idf weight. 

Hyper-parameters Value 

qh  length 200 

ah  length 200 

tensor rank 3 
tensor output length 100 

margin 0.2 

  of l2-norm 0.001 



9 

 KL divergence. Construct the unigram language model qM  for a question and 

aM  for an answer, and then compute their KL-distance. 

 Word overlapping. Simply count the number of overlapped words between ques-
tion and answer. 

 DeepMatch. We implement the DeepMatch network proposed by Lu and Li 
(2013). The number of latent topic is tuned to 200. 

 Bi-CNN models. Both question and answer are embeded into the latent semantic 
space using convolutional neural network. This includes the Arc-1 model with 
multi-layer perception (Hu et al., 2014) denoted as "qCNN-aCNN-Mlp" and ten-
sor model (Qiu and Huang, 2015) denoted as "qCNN-aCNN-Tensor". 

 One side CNN models. We replace the answer side CNN in the above models 
with the Sent-LDA method discussed in Section 3.2, thus form two models de-
noted as "qCNN-aTopic-Mlp" and "qCNN-aTopic-Tensor", respectively. 

 One side LSTM models. We use the LSTM network on question side and the 
Sent-LDA topic representation on the answer side. The "qLSTM-aTopic-Cosine" 
model calculates the cosine similarity between hidden representations like Palangi 
et al. (2015), while our basic model in this paper "qLSTM-aTopic-Tensor" utilizes 
a tensor layer. 

 LSTM model + Cosine. We combine the basic LSTM network score and cosine 
similarity score in a straightforward way cos(1 )lstm inescore a score a score     , 

where the heuristic weight a  is fine-tuned in the validation data. 

5.3 Results 

Table 4 reports the experimental results on answer retrieval in our cQA dataset. In gen-
eral, the performances of traditional methods, including cosine similarity, KL-
divergence and word overlapping are unsatisfying. However, we can still see that the 
simple exact word matching method like "Word over-lapping" retrieves correctly 32.3% 
answers in the 5,000 test data. It demonstrates that explicit lexical matching features 
play an important role for answer retrieval. 

We get the following observations from Table 4. 1) The neural network models ob-
tain considerably better results than traditional methods. 2) The tensor network gives 
an obvious improvement than the multi-layer perception. 3) Our Sent-LDA representa-
tion for answers obtains comparable results with CNN. 4) The bi-directional LSTM 
representation for questions achieves further improvement than CNN. 5) Among those 
neural network models with only implicit semantic relevance, the basic LSTM model 
in this paper performs the best with 46.8% on P@1 and 64.9% on MRR. 
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Table 4. The experimental results on answer retrieval. We implement various neural network 
models in our dataset: DeepMatch (Lu and li, 2013), qCNN-aCNN-Mlp (Hu et al., 2014), qCNN-
aCNN-Tensor (Qiu and Huang, 2015), qLSTM-aTopic-Cosine (like Palangi et al., 2015). 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

Our proposed ExMaLSTM model combines dynamically the implicit semantic rele-
vance score and the explicit matching information, achieving the best performance with 
2.3% increase on P@1 (p<0.01) and 2.0% increase on MRR (p<0.01). 

5.4 Analysis 

We will give a more detailed analysis on our extended model ExMaLSTM. The incor-
poration of the explicit matching features is denoted as "Explicit match" in Table 4. For 
the static version, we simply add up the explicit and implicit scores with a fixed weight, 
which is fine-tuned on the validation data. For the dynamic version, we use the gate 
network to automatically calculate the weight. 

It can be seen that the explicit matching information do benefit, because even simply 
combining the score of our basic LSTM network model with the cosine similarity score 
achieves better results than individual methods. Both of two versions consistently out-
perform the basic LSTM model. The static version obtains 1.6% increase on P@1 
(p<0.05) and 1.4% increase on MRR (p<0.05), and the dynamic version obtains 2.3% 
(p<0.05) increase on P@1 and 2.0% increase on MRR (p<0.05). The dynamic 
weighting strategy performs better because it can consider different contributions of the 
explicit and implicit scores through the gated weight. 

We briefly analyze the computation process on the example in Table 1. Table 5 gives 
the intermediate values in the relevance computing process between the question and 
its expected and unexpected answers. 

Although the unexpected answer lies in the same "food" topic with the question thus 
gets a high implicit relevance score 0.91, the explicit matching score is quite low with 
only 0.22. What’s more, the gate network does not give the implicit score a high weight 
(only 0.53). Thus the final relevance score between the question and its unexpected 

Method P@1 MRR 
Cosine similarity 34.2 53.8 
KL-divergence 24.4 45.1 

Word overlapping 32.3 52.0 
DeepMatch 41.9 60.5 

qCNN-aCNN-Mlp 43.5 61.7 
qCNN-aCNN-Tensor 44.6 63.8 
qCNN-aTopic-Mlp 43.2 62.5 

qCNN-aTopic-Tensor 45.4 63.2 
qLSTM-aTopic-Cosine 45.7 62.7 

qLSTM-aTopic-Tensor 46.8 64.9 
+Cosine 47.7 65.8 

+ Explicit match (static) 48.4 66.3 
+Explicit match (dynamic) 49.1 66.9 
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answer is only 0.59. However for the expected answer, it gets both a high explicit score 
(0.87) due to the lexical matching of "spicy hot pot" in this question-answer pair, and a 
high implicit score (0.64) by addressing the same "food" topic. Thus the final relevance 
score between the question and its expected answer is 0.77. In this way, our extended 
model ExMaLSTM successfully retrieves the expected answer but discards the unex-
pected answer. 

Table 5. The intermediate values in the relevance computing process.  

Value Expected Ans. Unexpected Ans. 

impscore  0.64 0.91 

expscore  0.87 0.22 

g  0.42 0.53 
score  0.77 0.59 

6 Conclusion 

In this paper, we propose an ExMaLSTM model to incorporate the explicit matching 
knowledge into the traditional LSTM neural network. First, we extract the explicit lex-
ical matching knowledge by using rich linguistic information. Then, we incorporate 
these explicit matching features into the LSTM network to summarize the overall ex-
plicit matching status between a question and its related answers. Finally, we dynami-
cally assign different weights to the explicit matching score and the implicit relevance 
score through a gate network, and sum up both scores to get the final relevance score. 
The experimental results show that our proposed ExMaLSTM model outperforms var-
ious state of-the-art neural network methods. 
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