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Abstract. Uyghur is an agglutinative language that has many mor-
phemes. It is necessary for processing Uyghur to segment words into
morphemes. This work is called morphological segmentation. Previous
works treat morphological segmentation as a tagging task and classify
each character as one of four classes, which are {b,m, e, s}. However,
these labels are not independent from each other, which makes the mod-
els easily overfitted. We propose a new method for the segmentation task.
Instead of using these labels, we use only segmentation points for mod-
eling. The model used in our method is more robust and easier to train
than previous methods. Applying our model to Uyghur morphological
segmentation, it achieves high accuracy and higher recall and f1 score
than previous models.

Keywords: morphological segmentation · Uyghur · linguist · agglutina-
tive language, PointerNetwork, NLP.

1 Introduction

Morpheme is the smallest grammatical unit in a language. There are two classes
of morphemes: 1) free morphemes, which have meaning, and 2) bound mor-
phemes, which have no meaning and need free morphemes to construct words.
Language can be classified as two major types according to the ratio of mor-
phemes per word: synthetic language and analytic language. Synthetic language
has a high morpheme-per-word ratio. On the contrary, most words are free mor-
phemes in analytic language. More specifically, synthetic language can be classi-
fied into inflected language, which combines morphemes by inflection, and agglu-
tinative language, which combines morphemes by concatenation. For example,
the English word unbreakable is inflected from un+break+able. Morphological
segmentation is a task that segments words into morphemes, which is a ba-
sic natural-language-processing (NLP) task. The superiorities of morphological
segmentation before further processing are as follows:

(i) Reduction of vocabulary size and alleviation of the sparsity problem be-
cause words can the share same morpheme;
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(ii) Alleviation of the out-of-vocabulary (OOV) problem because new words
can be constructed with known morphemes.

Uyghur is a typical agglutinative language with numbers of morphemes, and
most Uyghur words are combined from numbers of morphemes. It is almost like
a phrase in English that leads to it having very low frequency. Moreover, it is
difficult to further process the Uyghur language without morphological segmen-
tation, so it is necessary for Uyghur to undergo morphological segmentation.

Parts of previous works use linguists to build a rules-based system (Orhun
et al., 2009), which is complex and low-performing. In recent years, a statis-
tics method has been used in this field, in which segmentation is treated as a
sequence of classification tasks, using {b,m, e, s} to label the sequence (Wang
et al., 2016). However, there is a problem with this labeling method, specifically
the tags {b,m, e, s} are not independent of each other, which may make the
model overfitted, and, in turn, cause high accuracy, low recall, and eventually a
low f1 score.

The motivation of our work is to find a new method for tagging data in which
the tags are independent of each other, and to use this method to build a better
model.

In our model, we do not use the aforementioned set of tags; instead, seg-
mentation points that are independent of each other will be used. Further, to fit
the shape of data using the proposed method, we use PointerNetwork (Vinyals
et al., 2015) as the main modeling framework. Eventually, the results are more
improved than those using all previous reported methods of Uyghur morpholog-
ical segmentation.

2 Related Work

The famous unsupervised tools for morphological segmentation is Morfessor
(Creutz and Lagus (2002)), which uses a minimum description length (MDL)
algorithm. MDL-based unsupervised methods were an important breakthrough
and have been applied to several languages (Goldsmith, 2001). However, this
method cannot achieve good performance without manual human retrofitting.
Poon et al. (2009) built a log-linear model and used an expectation maximization
(EM) algorithm for training, which is a classic model framework for unsupervised
learning. Based on this model, Bergmanis and Goldwater (2017) used linguistic
information from pre-trained word-vectors as the main feature for their log-linear
model and realized better performance.

For supervised machine learning, morphological segmentation has been treated
as a classification task for each character of the sequence that classifies each char-
acter as one of four classes, {b,m, e, s}. With that approach, the original method
is called a conditional random-field- (CRF-) based model. Cotterell et al. (2016)
used a hidden Markov model (HMM) and the CRF model for segmentation. For
part-of-speech tagging, Plank et al. (2016) used a bidirectional LSTM(Hochreiter
and Schmidhuber, 1997) with the CRF model, which also works for morphologi-
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cal segmentation tasks. Similarly, Wang et al. (2016) used a bidirectional window
LSTM for modeling and achieved outstanding performance.

For the Uyghur language, Osman et al. (2019) used CRF to build a model,
and, in addition, they enlarged the tagging set for orthography. ABUDUKE-
LIMU et al. (2017) used a bidirectional GRU(Cho et al., 2014) model for the
Uyghur language and achieved the best performance, to date, in Uyghur mor-
phological segmentation.

All of the aforementioned good-performance methods approached the mor-
phological segmentation task as a tagging task. This method can be expressed as
shown in Figure 1, where, in a {b,m, e, s} tagging method, the sequence is tagged
and each character is assigned one of the following pre-determined classes:

(i) B represents the beginning of a multi-character segmentation;
(ii) M represents the middle of a multi-character segmentation;

(iii) E denotes the end of a multi-character segmentation;
(iv) S denotes a single-character segmentation.

When we reviewed this tagging method, we found that if we remove the
symbols M and E, segmentation can still proceed with the remaining symbols.
Thus, the total information in all symbols is equal to the information in symbols
B and S; that is to say, those tags are not independent of each other based on
information theory. When training the model with the above four classes, the
model will learn what the tag is and how to use it in the correct order, which is
slightly too much effort for a model to just segment a sequence. In other words,
there are rules in those tags that the model must learn, and if it focuses on these
rules, overfitting may result.

It is therefore necessary to make the model concentrate on segmentation, and
a new method is needed to facilitate that.

Fig. 1. Tagging sequence with {b,m, e, s}

3 Segmentation models

3.1 Labeling corpus

In the preceding section, we found that B and S have all of the information,
which is the start of each segmented sequence. These tags can be expressed as
a pointer to point to where to segment the sequence. Therefore, we treat this
task as a generation task that generate a set of pointers pointing to the first
character of each segmented sub-sequence, as shown in Figure 2.
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This method, which only uses segmentation points, clearly instructs the
model how to segment a word and it is thus easier for a model to understand
what it should learn from data. It is difficult for the model to make a mistake
and this method makes the model more robust.

Fig. 2. Tagging sequence with pointer

The two aforementioned labeling methods are formalized in the following.
For the {b,m, e, s} method,

θ = arg max
θ

n∑
i=1

log p(bi|L : θ),

where L = (l1, l2...ln) is a sequence that must be segmented, B = (b1, b2, ...bn)
is the {b,m, e, s} label, and θ is the model’s parameter.

In the proposed method,

θp = arg max
θp

m∑
i=1

log p(pi|L : θp),

where P = (p1, p2...pm) is the pointer sequence for which m < n, and θp is the
model’s parameter.

3.2 Model selection

Because the length of P is not equal to the length of L, we cannot use a recent
method like the CRF-based model. To deal with non-aligned data, the best
method is to use a sequence to sequence (Seq2Seq) model (Sutskever et al., 2014).
A Seq2Seq model is also known as an encoder-decoder (Cho et al., 2014) model.
It was proposed to model machine translation with a deep neural network and
obtain state-of-the-art performance. A Seq2Seq model has an encoder that can
obtain the information of input data and push that information to the decoder,
which decodes outputs.

However, a weakness is revealed upon reviewing the difference between the
output of the Seq2Seq model and our proposed model. A Seq2Seq model can
actually contain our outputs, but there is no strong relation between the input
set and output set in the original Seq2Seq model. However, in this segmentation
task, our output is a pointer pointing to the input that has a strong relation to
the input.
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In Vinyals et al. (2015)’s work, their PointerNetwork is a special Seq2Seq
network. Each of the outputs of the PointerNetwork is a pointer that points to
an input sequence that is usually used on text summarization and Q&A tasks
that need the model to point out something from the input.

3.3 PointerNetwork with scaled attention

Fig. 3. Proposed modified PointerNetwork with scaled attention with example input
(x1, x2, x3, x4, x5) in which x5 is an end-of-sequence symbol <eos>

In our work, we use a modified PointerNetwork with scaled attention for the
proposed method. There are three parts in our scaled attention PointerNetwork:
encoder, decoder, and attention. In the encoder and decoder, we replace the
LSTM (Hochreiter and Schmidhuber, 1997) with GRU (Cho et al., 2014) to
reduce the size of the model. After passing through the encoder and decoder,
the data flow into the attention sub-model and the probability of pointing to
each input item is calculated. The entire process is detailed below.

Figure 3 shows a sample procedure for the modified PointerNetwork that we
propose. Suppose the input of the PointerNetwork is X = (x1, x2, x3, x4, x5), in
which x5 is an end-of-sequence symbol <eos>. In addition, the sequence X is to
be segmented into (x1, x2) and (x3, x4).

First, X goes through the encoder to obtain the output O and a hidden state
h that will be sent to the decoder. The first input of the decoder is a symbol
<sos>, which means the start of the sequence.

The decoder then calculates an output c1 that will be sent to the scaled
attention sub-model, and the probability vector with O will be calculated. The
probability vector’s dimension is equal to the length of the input X, which is 5
in this case. The largest probability in this vector will be the pointer pointing to
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the input, which is x1 in this first step. The character that is pointed out by the
output of the attention mechanism is sent into the decoder, which is output c2
in the second step. Through use of the attention model, the output in this case
is a pointer pointing to x3.

Finally, in the third step, the decoder and attention model with the x3 output
pointer points to x5, which is an end-of-sequence symbol. Then, the entire de-
coding stops, and the output 3 pointer segments the sequence (x1, x2, x3, x4, x5)
into (x1, x2) and (x3, x4).

The entire procedure is demonstrated over, and the three parts of the pro-
posed model are detailed below.

Encoder and decoder The encoder and decoder have a similar structure,
which lets data go through them in each time step. Both also have a stacked
GRU. Details are as follows.

Encoder:
In the encoder, we define X = (x1, x2, x3...xn) as an input sequence and,

through the encoder fencoder, an output sequence O = (o1, o2, o3...on) and a
hidden state hn. The encoder can be represented as

O, hn = fencoder(X),

and for each time step,

oi, hi = fencoderi−1
(xi−i, hi−1).

Decoder:
The input of the decoder in each time step is a character that is pointed out

in the last time step. Because the encoder and decoder use the same charset for
input, we share char embedding between encoder and decoder.

Each time step can be represented as follows. In time step j, we assume the
output of time step j − 1 points to xi−1, and the hidden state is hj−1,

cj = fdecoderj (xi−1, hj−1),

where the output of the decoder is cj , which will be sent to the attention
model to calculate the probability of each input pointer.

Scaled attention The attention model uses one of the decoder’s outputs and
all of the encoder’s output to calculate the probability of pointing to each input
item. Suppose that the length of input is n, and then the attention model’s
output vector has n dimension. Each dimension represents a probability of an
input item:

yi = fatten(O, ci),

where yi has n dimension.
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In the original PointerNetwork, Bahdanau-style attention (Bahdanau et al.,
2014) is used. This attention mechanism is calculated as follows:

fatten(oi, cj) = V >a tanh(W1oi +W2cj),

where V is a learned vector parameter and W1 and W2 are two learned matrix
parameters. oi and cj are the outputs of the encoder and decoder, respectively.

In our work, we use dot-product attention instead, which is much faster and
more space-efficient in practice, since it can be implemented using highly opti-
mized matrix multiplication code. In addition, we follow Vaswani et al. (2017)’s
scaled-attention mechanism. According to the latter paper, for large dimension
dK , dot-product attention obtains small gradients when using a softmax function
in this part without scaling. The calculation is expressed as

fatten = softmax(
QK>√
dK

),

Q = WQC,

K = WKO,

where C is the encoder’s output and O the decoder’s output; WQ and WK are
two independent learnable matrices.

In practice, we mask out (set to ∞) all values larger than the length of
input after the softmax function with a batch because we need to pad the batch
sequence to the same length for batch input.

3.4 Decoding

Our model is different when inference. For the previous model, the input goes
through the model and gets output for each character. But our model is a
Seq2Seq model, the length of outputs are not equal to the input. And the decoder
will emit each output at each timestamp. The important is in each timestamp
decoder need previous output to calculate the output in current timestamp. In
another words, the decoder needs a decoding procedure which is not needed in
previous model.

There is a flaw in our model if we use previous decoding method. In decoding,
the previous output which the decoder need is the previous pointer points to the
previous segmentation point. And the output in this timestamp should be a
pointer after the previous pointer, which can be a pointer before the previous
one. It is an error in that situation.

To fix that flaw, we mask the output which let the probability to point before
the previous one be zero, when decoding.

4 Experimentation

4.1 Dataset

For Uyghur morphological segmentation, we use the THUUyMorph (Halidanmu
et al., 2018) dataset. For the comparison experiment, we process this corpus
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into two files: one is a source-words list and the other is a label list that uses
{b,m, e, s} symbols.

In our model experiment, the corpus is processed into three files: a source-
words list, a pointer list, and a character list that are pointers pointing to the
source words.

The dataset was split into two parts, one for training (70%) and one for
testing (30%).

4.2 Training

For the sequence classification method, we trained the CRF model as the base-
line model and the bidirectional GRU model as represented by ABUDUKELIMU
et al. (2017) as the state of the art. For the CRF model, we use CRF++. In
contrast, for the bidirectional GRU model, we follow the setting in ABUDUKE-
LIMU et al. (2017), which has a 1024 GRU dimension and a 300-char embedding
size.

In the original PointerNetwork, Vinyals et al. (2015) did not use the output
of the hidden state from the encoder. We double it because the hidden state
has rich linguistic features that should help performance. Therefore, we train
our model using the two aforementioned models separately. In addition, we use
the scaled-attention mechanism. To determine whether our procedure works,
the attention-without-scaling mechanism is also trained. Moreover, to realize a
better hyperparameter for our model, we trained various sizes of embeddings
and GRUs. For the char embedding, the encoder and decoder share the same
embedding weight because they use the same char vocabulary. For optimiza-
tion, all neural network models are optimized by stochastic gradient descent
(SGD)(Kiefer and Wolfowitz, 1952) with learning rate 0.1 and decay to 0.9 per
10000 steps. For normalization, all neural network models include bi-GRU model
are used dropout with rate 0.3.

Table 1. Results of comparisons to baseline

Method Accuracy Precision Recall f1

CRF 94.20 98.42 95.23 96.80
Bi-GRU 98.5 96.05 96.15 96.15

Small pointer* 97.80 96.39 98.70 97.50

Large pointer** 98.03 96.52 98.56 97.53
* Uses size-256 GRU and size-32 embedding.
** Uses size-1024 GRU and size-64 embedding.

4.3 Analysis

The results are shown in Tables 1 and 2.
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Table 2. Results using various hyperparameters

GRU size Embedding Hidden state*Scaled**Accuracy Precision Recall f1

256 32 F F 97.63 95.61 97.48 96.35
256 32 F T 97.60 95.76 98.24 96.98
256 32 T F 97.69 95.99 97.27 96.63
256 32 T T 97.70 96.24 98.70 96.80

512 32 F F 97.92 96.29 97.66 96.97
512 32 F T 97.96 96.29 97.78 97.03
512 32 T F 97.79 96.38 97.21 96.79
512 32 T T 97.80 96.39 98.70 97.50

1024 32 F F 97.84 96.58 97.17 96.87
1024 32 F T 97.98 96.35 97.75 97.05
1024 32 T F 97.72 96.04 97.32 96.67
1024 32 T T 97.91 96.89 98.48 97.68

1024 64 F F 97.30 95.48 97.76 96.61
1024 64 F T 97.72 96.15 98.16 97.15
1024 64 T F 97.41 95.86 97.69 96.76
1024 64 T T 98.03 96.52 98.56 97.53

1024 128 T T 97.93 96.43 98.42 97.41

2048 128 T T 97.92 96.36 98.44 97.39
* Uses encoder’s hidden state output or not that used by the decoder as

initiation state.
** Uses scaled attention in attention mechanism or not.

In Table 1, we apply two models to facilitate a comparison with the baseline
and SoTA. As we expected, we obtain a higher recall and f1 score. Because we
use a more independent label to train our model, it is difficult to overfit the data
and the former output would not affect the subsequent output. It makes our
model less error-prone and we eventually obtain a low recall and f1 score, which
makes our model more robust.

In Table 2, we compare different hyperparameters of our models. We train
several models by using hidden state and scaled attention in various hyper-
parameters. In all hyperparameters, we can get the same conclusion. First, as
mentioned above, using the encoder’s hidden state is definitely helpful because
there is useful information in it. The scaled-attention mechanism used in our
model is more important than the hidden state, since the performance is signif-
icantly reduced without scaled attention. We believe that scaled attention can
make the attention model more clear when the lengths of input are varied and
the pointers need to point to them. In other words, it is a kind of dimension-wise
normalization. Regarding the size of GRU and embedding, bigger is not better.
A GRU size of 1024 and an embedding size of 64 obtains the best result; larger
values of either of these two hyperparameters will degrade the performance.
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5 Conclusions

In previous work, morphological segmentation was viewed as a classification
problem for each item in a sequence using the set {b,m, e, s} to label the se-
quence. We found this method to have a label-dependent problem that is dam-
aging to training and performance. To solve this problem, we propose using fewer
independent labels to model morphological segmentation tasks. We first apply
PointerNetwork, modify it with a scaled attention mechanism, and use the hid-
den state of the encoder, in contrast to the original PointerNetwork. We thus
obtain a higher recall and f1 score compared with the previous baseline and the
SoTA Uyghur morphological segmentation model.

Results show that our new treatment of the segmentation task works and can
achieve a more robust model. Our new method can be ported to other segmenta-
tion or tagging tasks, e.g., Chinese segmentation or morphological segmentation
of the English, Urdu, and Turkish languages. Combining previous methods and
our method, a higher performance and more robust ensemble model can be re-
alized.
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